OFFSET
1,1
COMMENTS
Even numbers k such that sigma(k) has an odd prime factor prime(i), but prime(i-1) is not a factor of k, and A286561(k, prime(i)) <> A286561(sigma(k), prime(i)). This differs from the definition of A351542 in that prime(i) is not here required to be a factor of k itself. The condition implies also that if there is any such odd prime factor prime(i) of sigma(k), it must be >= 5.
Even numbers k for which A351555(k) > 0.
Question: Is A351538 subsequence of this sequence?
LINKS
EXAMPLE
12 = 2^2 * 3 is present as sigma(12) = 28 = 2^2 * 7, whose prime factorization contains an odd prime 7 such that neither it nor the immediately previous prime, which is 5, divide 12 itself.
196 = 2^2 * 7^2 is present as sigma(196) = 399 = 3^1 * 7^1 * 19^1, which thus has a shared prime factor 7 with 196, but occurring with smaller exponent, and with no prime 5 (which is the previous prime before 7) present in the prime factorization of 196.
364 = 2^2 * 7^1 * 13^1 is present as sigma(364) = 784 = 2^4 * 7^2, which thus has a shared prime factor 7 with 364, but occurring with larger exponent, and with no prime 5 (which is the previous prime before 7) present in the prime factorization of 364.
PROG
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 16 2022
STATUS
approved