login
A068311
Arithmetic derivative of n!.
8
0, 0, 1, 5, 44, 244, 2064, 15168, 181824, 1878336, 21323520, 238187520, 3496919040, 45938949120, 699188474880, 11185253452800, 220809635020800, 3774686585241600, 75413794524364800, 1439264469668659200, 31704771803185152000, 690129227948654592000
OFFSET
0,4
REFERENCES
Giorgio Balzarotti and Paolo P. Lava, La Derivata Arithmetica, Hoepli, Milan, p. 40.
Ivars Peterson, Deriving the Structure of Numbers, Science News, March 20, 2004.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..450 (first 101 terms from T. D. Noe)
FORMULA
a(n) = A003415(A000142(n)).
EXAMPLE
a(4) = d(4!) = d(3!*4) = d(3!)*4 + 3!*d(4) =
= d(2!*3)*4 + 3!*d(2*2) = d(2*3)*4 + 6*d(2*2) =
= (d(2)*3 + 2*d(3))*4 + 6*(d(2)*2 + 2*(d(2)) =
= (1*3 + 2*1)*4 + 6*(2*2*1) = 5*4 + 6*4 = 44;
where d(n) = A003415(n) with d(1)=0, d(prime)=1 and d(m*n)= d (m)*n + m*d(n).
a(6)=2064 because the arithmetic derivative of 6!=720 is 720*(4/2 + 2/3 + 1/5).
MAPLE
d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]):
a:= proc(n) option remember;
`if`(n<2, 0, a(n-1)*n+(n-1)!*d(n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Jun 06 2015
MATHEMATICA
a[0] = 0; a[1] = 0; a[n_] := Module[{f = Transpose[ FactorInteger[n]]}, If[PrimeQ[n], 1, Plus @@ (n*f[[2]]/f[[1]])]]; Table[ a[n! ], {n, 0, 6}] (* Robert G. Wilson v, Nov 11 2004 *)
PROG
(Magma) Ad:=func<h | h*(&+[Factorisation(h)[i][2]/Factorisation(h)[i][1]: i in [1..#Factorisation(h)]])>; [n le 1 select 0 else Ad(Factorial(n)): n in [0..30]]; // Bruno Berselli, Oct 23 2013
(Python 3.8+)
from collections import Counter
from math import factorial
from sympy import factorint
def A068311(n): return sum((factorial(n)*e//p for p, e in sum((Counter(factorint(m)) for m in range(2, n+1)), start=Counter({2:0})).items())) if n > 1 else 0 # Chai Wah Wu, Jun 12 2022
CROSSREFS
Sequence in context: A271298 A271118 A268762 * A109984 A247776 A374300
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Feb 25 2002
EXTENSIONS
a(19)-a(21) from Bruno Berselli, Oct 23 2013
STATUS
approved