OFFSET
1,2
LINKS
Matthew Campbell, Table of n, a(n) for n = 1..116505 The first 225 rows are in the b-file.
EXAMPLE
For row 3, the sum of the first three prime reciprocals equals 1/2 + 1/3 + 1/5 = 31/30. The continued fraction expansion of 31/30 is 1 + (1/30). Because of this, the terms in row 3 are 1 and 30.
From Michael De Vlieger, Aug 29 2015: (Start)
Triangle begins:
0, 2
0, 1, 5
1, 30
1, 5, 1, 2, 12
1, 3, 1, 2, 1, 9, 1, 1, 7
1, 2, 1, 9, 1, 2, 1, 2, 12, 7
1, 2, 2, 13, 1, 1, 1, 8, 13, 5, 4
1, 2, 5, 8, 1, 2, 6, 1, 1, 4, 10, 1, 2, 3, 1, 3
1, 2, 238, 1, 28, 1, 42, 2, 2, 7, 1, 1, 4
...
(End)
MAPLE
seq(op(numtheory:-cfrac(s, 'quotients')), s=ListTools:-PartialSums(map2(`/`, 1, [seq(ithprime(i), i=1..20)]))); # Robert Israel, Sep 06 2015
MATHEMATICA
Table[ContinuedFraction[Sum[1/Prime@k, {k, n}]], {n, 11}] // Flatten (* Michael De Vlieger, Aug 29 2015 *)
PROG
(PARI) row(n) = contfrac(sum(k=1, n, 1/prime(k)));
tabf(nn) = for(n=1, nn, print(row(n))); \\ Michel Marcus, Sep 18 2015
CROSSREFS
KEYWORD
nonn,tabf,cofr
AUTHOR
Matthew Campbell, Aug 29 2015
STATUS
approved