The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A075257 Smaller terms in the pairs of numbers (a < b) in the sequence {a,b}-> {Max[{a,b}]-Min[{a,b}],k*Min[{a,b}]} with k=3 and the first pair {a=1,b=2}. See A075256. 3
 1, 1, 2, 1, 3, 2, 6, 1, 3, 9, 5, 15, 7, 21, 17, 46, 5, 15, 45, 73, 62, 157, 29, 87, 261, 94, 282, 407, 439, 782, 535, 1605, 206, 618, 1854, 2137, 3425, 2986, 7289, 1669, 5007, 15021, 170, 510, 1530, 4590, 13770, 24493, 16817, 50451, 6211, 18633, 55899 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Take any pair {a,b}. Each next pair is get by the rule {a,b} -> Sort[{Max[{a,b}]-Min[{a,b}],k*Min[{a,b}]]. Here k=3 and the first {a,b}={1,2}. For k = 2 there is a fixed point {a,b=2a}. For k > 2, are there any limits or cycles of the sequence {for some initial pair {a,b}? LINKS Hugo Pfoertner, Table of n, a(n) for n = 1..1000 FORMULA a(n) = A075256(2*n-1). MATHEMATICA ss=Table[0, {j, 100}]; s=ss[[1]]={1, 2}; Do[ss[[i]]=Sort[{Max[s]-Min[s], 3*Min[s]}]; s=ss[[i]], {i, 2, 100}]; Table[Flatten[ss][[i]], {i, 1, 199, 2}] PROG (PARI) my(x=1, y=2); print1(x, ", "); for(n=2, 53, my(mx=max(x, y), mi=min(x, y)); x=min(mx-mi, 3*mi); y=max(mx-mi, 3*mi); print1(x, ", ")) \\ Hugo Pfoertner, Mar 21 2020 CROSSREFS Cf. A075256, A075258. Sequence in context: A266138 A014000 A339612 * A260618 A306286 A226651 Adjacent sequences: A075254 A075255 A075256 * A075258 A075259 A075260 KEYWORD nonn AUTHOR Zak Seidov, Sep 10 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 25 23:47 EDT 2023. Contains 361529 sequences. (Running on oeis4.)