login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075257
Smaller terms in the pairs of numbers (a < b) in the sequence {a,b}-> {Max[{a,b}]-Min[{a,b}],k*Min[{a,b}]} with k=3 and the first pair {a=1,b=2}. See A075256.
3
1, 1, 2, 1, 3, 2, 6, 1, 3, 9, 5, 15, 7, 21, 17, 46, 5, 15, 45, 73, 62, 157, 29, 87, 261, 94, 282, 407, 439, 782, 535, 1605, 206, 618, 1854, 2137, 3425, 2986, 7289, 1669, 5007, 15021, 170, 510, 1530, 4590, 13770, 24493, 16817, 50451, 6211, 18633, 55899
OFFSET
1,3
COMMENTS
Take any pair {a,b}. Each next pair is get by the rule {a,b} -> Sort[{Max[{a,b}]-Min[{a,b}],k*Min[{a,b}]]. Here k=3 and the first {a,b}={1,2}. For k = 2 there is a fixed point {a,b=2a}. For k > 2, are there any limits or cycles of the sequence {for some initial pair {a,b}?
LINKS
FORMULA
a(n) = A075256(2*n-1).
MATHEMATICA
ss=Table[0, {j, 100}]; s=ss[[1]]={1, 2}; Do[ss[[i]]=Sort[{Max[s]-Min[s], 3*Min[s]}]; s=ss[[i]], {i, 2, 100}]; Table[Flatten[ss][[i]], {i, 1, 199, 2}]
PROG
(PARI) my(x=1, y=2); print1(x, ", "); for(n=2, 53, my(mx=max(x, y), mi=min(x, y)); x=min(mx-mi, 3*mi); y=max(mx-mi, 3*mi); print1(x, ", ")) \\ Hugo Pfoertner, Mar 21 2020
CROSSREFS
Sequence in context: A266138 A014000 A339612 * A260618 A306286 A226651
KEYWORD
nonn
AUTHOR
Zak Seidov, Sep 10 2002
STATUS
approved