login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A075255 a(n) = n - (sum of primes factors of n (with repetition)). 13
1, 0, 0, 0, 0, 1, 0, 2, 3, 3, 0, 5, 0, 5, 7, 8, 0, 10, 0, 11, 11, 9, 0, 15, 15, 11, 18, 17, 0, 20, 0, 22, 19, 15, 23, 26, 0, 17, 23, 29, 0, 30, 0, 29, 34, 21, 0, 37, 35, 38, 31, 35, 0, 43, 39, 43, 35, 27, 0, 48, 0, 29, 50, 52, 47, 50, 0, 47, 43, 56, 0, 60, 0, 35, 62, 53, 59, 60 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,8

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = n - A001414(n).

a(n) = 0 if n is prime or if n = 4. - Alonso del Arte, Jul 31 2018

EXAMPLE

a(6) = 1 because 6 = 2 * 3, sopfr(6) = 2 + 3 = 5 and 6 - 5 = 1.

MAPLE

a:= n-> n-add(i[1]*i[2], i=ifactors(n)[2]):

seq(a(n), n=1..100); # Alois P. Heinz, Aug 07 2015

MATHEMATICA

Join[{1}, Table[n - Total[Times@@@FactorInteger[n]], {n, 2, 80}]] (* Harvey P. Dale, Sep 20 2011 *)

PROG

(PARI) A075255(n)=n-sum(i=1, #n=factor(n)~, n[1, i]*n[2, i]) \\ M. F. Hasler, Oct 31 2008

(Magma) [n eq 1 select 1 else n-(&+[p[1]*p[2]: p in Factorization(n)]): n in [1..80]]; // G. C. Greubel, Jan 11 2019

(Sage) [n - sum(factor(n)[j][0]*factor(n)[j][1] for j in range(0, len(factor(n)))) for n in range(1, 80)] # G. C. Greubel, Jan 11 2019

(Python)

from sympy import factorint

def A075255(n): return n - sum(factorint(n, multiple=True)) # Chai Wah Wu, May 19 2022

CROSSREFS

Cf. A001414, A008472, A075254, A075653.

Cf. A145834 (= 0 followed by the nonzero terms of this sequence). - M. F. Hasler, Oct 31 2008

Sequence in context: A021815 A238525 A359788 * A135498 A104172 A091408

Adjacent sequences: A075252 A075253 A075254 * A075256 A075257 A075258

KEYWORD

nonn

AUTHOR

Zak Seidov, Sep 10 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 1 22:19 EDT 2023. Contains 361716 sequences. (Running on oeis4.)