login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A013999
From applying the "rational mean" to the number e.
9
1, 1, 2, 8, 42, 258, 1824, 14664, 132360, 1326120, 14606640, 175448160, 2282469840, 31972303440, 479793807360, 7679384173440, 130586660507520, 2351111258805120, 44679858911251200, 893744703503769600, 18771276190401504000, 413017883356110278400
OFFSET
0,3
COMMENTS
Binomial transform of A000271. - Vladeta Jovovic, Jun 26 2007
Conjecture: this is also the number of acyclic orientations of the complement of the path graph. - Martin Rubey, Oct 15 2023
LINKS
Domingo Gómez Morín, New Elements For The Irrational Numbers, Journal of Transfigural Mathematics, Vol. 2, No. 1, 1996.
FORMULA
G.f.: Sum_{n>=0} n!*(x*(1-x))^n. - Vladeta Jovovic, Jun 26 2007
Recurrence: a(n) = (n+3)*a(n-1) - (2*n+1)*a(n-2) + n*a(n-3). - Vaclav Kotesovec, Oct 07 2012
G.f.: 1/Q(0), where Q(k)= 1 + x/(1-x) - x*(k+2)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 21 2013
a(n) = sum(binomial(n-k+1,k)*(-1)^k*(n-k+1)!, k=0..floor((n+1)/2)). - Emanuele Munarini, Jul 01 2013
a(n) ~ n!*n/exp(1). - Vaclav Kotesovec, Jul 06 2013
MATHEMATICA
Table[SeriesCoefficient[Sum[k!*(x*(1-x))^k, {k, 0, n}], {x, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, Oct 07 2012 *)
PROG
(Maxima) makelist(sum(binomial(n-k+1, k)*(-1)^k*(n-k+1)!, k, 0, floor((n+1)/2)), n, 0, 20); /* Emanuele Munarini, Jul 01 2013 */
CROSSREFS
Cf. A000271.
Sequence in context: A100327 A018934 A107588 * A130649 A054993 A188912
KEYWORD
nonn
AUTHOR
Domingo Gomez Morin (Dgomezm(AT)etheron.net)
STATUS
approved