The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A188912 Binomial convolution of the binomial coefficients bin(3n,n)/(2n+1) (A001764). 3
 1, 2, 8, 42, 260, 1816, 13962, 116094, 1029124, 9609144, 93569808, 942642696, 9763181946, 103455616400, 1117379189926, 12264816349938, 136501928050116, 1537591374945704, 17503603786398576, 201128739609458904, 2330480521265639136 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..93 FORMULA a(n) = sum(binomial(n, k)*binomial(3*k, k)/(2*k+1)*binomial(3*n-3*k, n-k)/(2*n-2*k+1), k=0..n) E.g.f: F(1/3,2/3;1,3/2;27*x/4)^2, where F(a1,a2;b1,b2;z) is a hypergeometric series. From Vaclav Kotesovec, Jun 10 2019: (Start) Recurrence: 8*n^2*(n+1)*(2*n+1)^2*(9*n^3-54*n^2+84*n-35)*a(n) = 24*n*(324*n^7-2187*n^6+4689*n^5-4185*n^4+1464*n^3+122*n^2-223*n+44)*a(n-1) - 18*(n-1)*(3645*n^7-30618*n^6+96066*n^5-144585*n^4+103662*n^3-21834*n^2-10860*n+4480)*a(n-2) + 2187*(n-2)^2*(n-1)*(3*n-7)*(3*n-5)*(9*n^3-27*n^2+3*n+4)*a(n-3). a(n) ~ 3^(3*n + 1) / (Pi * n^3 * 2^(n + 1)). (End) MATHEMATICA Table[Sum[Binomial[n, k]Binomial[3k, k]/(2k+1)Binomial[3n-3k, n-k]/(2n-2k+1), {k, 0, n}], {n, 0, 22}] PROG (Maxima) makelist(sum(binomial(n, k)*binomial(3*k, k)/(2*k+1)*binomial(3*n-3*k, n-k)/(2*n-2*k+1), k, 0, n), n, 0, 12); CROSSREFS Cf. A005809, A001764, A005809, A006256, A006013, A045721, A188911, A188913 Sequence in context: A013999 A130649 A054993 * A229285 A339460 A005315 Adjacent sequences:  A188909 A188910 A188911 * A188913 A188914 A188915 KEYWORD nonn,easy AUTHOR Emanuele Munarini, Apr 13 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 12 21:06 EDT 2021. Contains 343829 sequences. (Running on oeis4.)