OFFSET
0,3
COMMENTS
Compare to o.g.f. of Bell numbers: Sum_{n>=0} x^n / Product_{k=0..n} (1 - k*x).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..160
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 42*x^4 + 260*x^5 + 1860*x^6 +...
where
A(x) = 1 + x/(1-x) + x^2/((1-x)*(1-2*x)*(1-3*x)) + x^3/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)) +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=0, n, x^m/prod(k=1, 2*m-1, 1-k*x+x*O(x^n)))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 18 2013
STATUS
approved