The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A229285 G.f.: Sum_{n>=0} x^n / Product_{k=1..2*n-1} (1 - k*x). 2
 1, 1, 2, 8, 42, 260, 1860, 15020, 134336, 1313696, 13911528, 158279872, 1922455440, 24794405328, 338037825952, 4853075024192, 73123573392416, 1152965052858560, 18974557508679104, 325181733420301504, 5791431588096653824, 106990656473333558528, 2046805540661737323136 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Compare to o.g.f. of Bell numbers: Sum_{n>=0} x^n / Product_{k=0..n} (1 - k*x). LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..160 EXAMPLE G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 42*x^4 + 260*x^5 + 1860*x^6 +... where A(x) = 1 + x/(1-x) + x^2/((1-x)*(1-2*x)*(1-3*x)) + x^3/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)) +... PROG (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=0, n, x^m/prod(k=1, 2*m-1, 1-k*x+x*O(x^n)))); polcoeff(A, n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A229286. Sequence in context: A130649 A054993 A188912 * A339460 A005315 A182520 Adjacent sequences:  A229282 A229283 A229284 * A229286 A229287 A229288 KEYWORD nonn AUTHOR Paul D. Hanna, Sep 18 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 13 18:08 EDT 2021. Contains 343865 sequences. (Running on oeis4.)