login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229286
G.f.: Sum_{n>=0} x^n / Product_{k=1..2*n} (1 - k*x).
2
1, 1, 4, 18, 102, 684, 5216, 44388, 415672, 4234904, 46525992, 547327904, 6854491840, 90940138256, 1272862982272, 18728235407712, 288765445378272, 4653013453323968, 78164063007644288, 1365903793778043712, 24781386644286473856, 465969812835308934272, 9066115469486822859392
OFFSET
0,3
COMMENTS
Compare to o.g.f. of Bell numbers: Sum_{n>=0} x^n / Product_{k=0..n} (1 - k*x).
LINKS
Ira M. Gessel, General case of the some R-recursions, answer to question on MathOverflow (2024).
FORMULA
a(n) = R(n-1, 0) for n > 0 with a(0) = 1 where R(n, q) = (4*q+3)*R(n-1, q) - 2*(q+1)*(2*q+1)*R(n-2, q) + R(n-1, q+1) for n > 0, q >= 0 with R(n, q) = [n = 0] for n < 1, q >= 0. - Mikhail Kurkov, Oct 02 2024
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 18*x^3 + 102*x^4 + 684*x^5 + 5216*x^6 +...
where
A(x) = 1 + x/((1-x)*(1-2*x)) + x^2/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)) + x^3/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)*(1-6*x)) +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=0, n, x^m/prod(k=1, 2*m, 1-k*x+x*O(x^n)))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) upto(n) = my(v1, v2, v3, v4); v1 = vector(n, i, 1); v2 = vector(n, i, 0); v3 = vector(n+1, i, 0); for(i=1, min(n+1, 2), v3[i] = 1); for(i=1, n-1, v4 = v1; for(j=1, n-i, v1[j] = (4*j-1)*v1[j] - 2*j*(2*j-1)*v2[j] + v1[j+1]); v3[i+2] = v1[1]; v2 = v4); v3 \\ Mikhail Kurkov, Oct 02 2024
CROSSREFS
Cf. A229285.
Sequence in context: A327833 A350267 A064852 * A191365 A335459 A159666
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 18 2013
STATUS
approved