OFFSET
0,2
COMMENTS
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
FORMULA
G.f.: (1/x)*Series_Reversion( x*(1-x + sqrt(1 - 4*x)) / (2+x) ). - Paul D. Hanna, Nov 22 2012
G.f. A(x) = (1+G(x))/(1-G(x)), also A(x)^2 = (1+G(x))*G(x)/x, where G(x) = x*(1+G(x))/(1-G(x))^2 is the g.f. of A003169.
a(n) = 2*A003168(n) for n>0 with a(0)=1.
a(n) = Sum_{k=1..n} 2*binomial(n, k)*binomial(2n+k, k-1)/n for n>0 with a(0)=1.
Recurrence: 20*n*(2*n+1)*a(n) = (371*n^2 - 395*n + 96)*a(n-1) - 6*(27*n^2 - 103*n + 96)*a(n-2) + 4*(n-3)*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ sqrt(4046 + 1122*sqrt(17))*((71 + 17*sqrt(17))/16)^n/(136*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
a(n) = 2^n*binomial(3*n,2*n)*hypergeometric([-1-2*n,-n], [-3*n],1/2)/(n+1/2). - Peter Luschny, Jun 10 2017
MAPLE
A100327 := n -> simplify(2^n*binomial(3*n, 2*n)*hypergeom([-1-2*n, -n], [-3*n], 1/2)/ (n+1/2)): seq(A100327(n), n=0..22); # Peter Luschny, Jun 10 2017
MATHEMATICA
Flatten[{1, Table[Sum[2*Binomial[n, k]*Binomial[2n+k, k-1]/n, {k, 1, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Oct 17 2012 *)
PROG
(PARI) a(n)=if(n==0, 1, sum(k=0, n, 2*binomial(n, k)*binomial(2*n+k, k-1)/n))
(PARI) a(n)=polcoeff((1/x)*serreverse(x*(1-x+sqrt(1-4*x +x^2*O(x^n)))/(2+x)), n)
for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Nov 22 2012
(Magma)
A100327:= func< n | n eq 0 select 1 else (2/n)*(&+[Binomial(n, k)*Binomial(2*n+k, k-1): k in [1..n]]) >;
[A100327(n): n in [0..30]]; // G. C. Greubel, Jan 30 2023
(SageMath)
def A100327(n): return 2^n*binomial(3*n, 2*n)*simplify(hypergeometric([-1-2*n, -n], [-3*n], 1/2)/(n+1/2))
[A100327(n) for n in range(31)] # G. C. Greubel, Jan 30 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 17 2004
STATUS
approved