login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014004
Pisot sequence E(9,17), a(n) = floor( a(n-1)^2/a(n-2) + 1/2 ).
1
9, 17, 32, 60, 113, 213, 401, 755, 1422, 2678, 5043, 9497, 17885, 33682, 63432, 119459, 224972, 423680, 797898, 1502646, 2829867, 5329364, 10036557, 18901407, 35596190, 67036742, 126247353, 237756097, 447755619, 843238499, 1588034044, 2990674795, 5632206541
OFFSET
0,1
LINKS
D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305.
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
FORMULA
Known not to satisfy any linear recurrence.
MATHEMATICA
nxt[{a_, b_}]:={b, Floor[b^2/a+1/2]}; NestList[nxt, {9, 17}, 40][[All, 1]] (* Harvey P. Dale, Sep 22 2017 *)
PROG
(PARI) pisotE(nmax, a1, a2) = {
a=vector(nmax); a[1]=a1; a[2]=a2;
for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2));
a
}
pisotE(50, 9, 17) \\ Colin Barker, Jul 28 2016
CROSSREFS
Sequence in context: A147459 A352789 A188559 * A090994 A164887 A328016
KEYWORD
nonn
AUTHOR
STATUS
approved