login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188559
Number of 8 X n binary arrays without the pattern 0 1 diagonally, vertically, antidiagonally or horizontally.
2
9, 17, 32, 60, 112, 208, 384, 704, 1280, 2304, 4097, 7181, 12381, 20965, 34831, 56751, 90683, 142163, 218790, 330818, 491870, 719790, 1037650, 1474930, 2068890, 2866154, 3924527, 5315067, 7124435, 9457547, 12440553, 16224169, 20987389
OFFSET
1,1
COMMENTS
Row 8 of A188553.
LINKS
FORMULA
Empirical: a(n) = (1/40320)*n^8 - (1/2016)*n^7 + (19/2880)*n^6 - (7/180)*n^5 + (1247/5760)*n^4 - (85/288)*n^3 + (17911/10080)*n^2 + (1961/840)*n + 5.
Conjectures from Colin Barker, Apr 28 2018: (Start)
G.f.: x*(9 - 64*x + 203*x^2 - 372*x^3 + 430*x^4 - 320*x^5 + 150*x^6 - 40*x^7 + 5*x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)
EXAMPLE
Some solutions for 8 X 3:
..1..1..1....1..1..1....1..1..1....1..1..1....1..1..1....1..1..1....1..1..1
..1..1..1....1..1..0....1..1..1....1..1..1....1..1..1....1..1..1....1..1..1
..1..1..1....1..0..0....1..1..1....1..1..1....1..1..1....1..1..1....1..1..1
..1..1..1....0..0..0....1..1..1....1..1..1....1..1..1....1..1..0....1..1..1
..1..1..1....0..0..0....1..1..1....1..1..1....1..1..1....1..0..0....1..1..0
..1..1..0....0..0..0....1..1..1....1..0..0....1..1..1....0..0..0....1..0..0
..0..0..0....0..0..0....1..1..1....0..0..0....1..1..0....0..0..0....0..0..0
..0..0..0....0..0..0....1..0..0....0..0..0....0..0..0....0..0..0....0..0..0
CROSSREFS
Cf. A188553.
Sequence in context: A228260 A147459 A352789 * A014004 A090994 A164887
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 04 2011
STATUS
approved