login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328016
Numbers k such that k, k+1, ... k+6 are all cubefree (A004709).
4
1, 9, 17, 33, 41, 57, 65, 73, 89, 97, 113, 137, 145, 153, 169, 177, 193, 201, 209, 217, 225, 233, 257, 273, 281, 289, 305, 313, 329, 353, 361, 385, 393, 409, 417, 425, 433, 441, 449, 465, 473, 489, 505, 521, 529, 545, 553, 569, 577, 585, 601, 609, 633, 641, 649, 657
OFFSET
1,2
COMMENTS
There cannot be 8 consecutive cubefree numbers since one of them must be divisible by 8 = 2^3.
All the terms are congruent to 1 mod 8.
The asymptotic density of this sequence is A328017.
LINKS
Leon Mirsky, Arithmetical pattern problems relating to divisibility by rth powers, Proceedings of the London Mathematical Society, Vol. s2-50, No. 1 (1949), pp. 497-508.
EXAMPLE
9 is in the sequence since the numbers 9, 10, ... 15 are all cubefree.
MATHEMATICA
cubeFreeQ[n_] := FreeQ[FactorInteger[n], {_, k_ /; k > 2}]; aQ[n_] := AllTrue[n + Range[0, 6], cubeFreeQ]; Select[Range[650], aQ]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Oct 01 2019
STATUS
approved