login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275543
A081585 and A069129 interleaved.
2
1, 1, 9, 17, 33, 49, 73, 97, 129, 161, 201, 241, 289, 337, 393, 449, 513, 577, 649, 721, 801, 881, 969, 1057, 1153, 1249, 1353, 1457, 1569, 1681, 1801, 1921, 2049, 2177, 2313, 2449, 2593, 2737, 2889, 3041, 3201, 3361, 3529, 3697, 3873, 4049, 4233, 4417, 4609
OFFSET
0,3
COMMENTS
a(A000129(n)) is a square.
(n^2)*a(n) = A275496(n) which is a triangular number.
(A000129(n)^2)*a(A000129(n)) = A275496(A000129(n)) = A001110(n) which is a square triangular number.
a(2n+1)/a(2n) is convergent to 1.
FORMULA
a(0) = 1; a(n) = A275496(n)/(n^2) for n > 0.
From Colin Barker, Aug 01 2016: (Start)
a(n) = (2*n^2 + (-1)^n).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n > 3.
G.f.: (1 -x +7*x^2 +x^3) / ((1 - x)^3*(1 + x)).
(End)
From Daniel Poveda Parrilla, Aug 18 2016: (Start)
a(2n) = A077221(2n) + 1.
a(2n + 1) = A077221(2n + 1). (End)
Sum_{n>=0} 1/a(n) = (1 + (tan(c) + coth(c))*c)/2, where c = Pi/(2*sqrt(2)) is A093954. - Amiram Eldar, Aug 21 2022
EXAMPLE
a(1) = A275496(1) = 1.
a(5) = A275496(5)/25 = 1225/25 = 49.
a(7) = A275496(7)/49 = 4753/49 = 97.
a(12) = A275496(12)/144 = 41616/144 = 289.
MATHEMATICA
CoefficientList[Series[(1 - x + 7 x^2 + x^3)/((1 - x)^3 (1 + x)), {x, 0, 48}], x] (* or as defined *)
Riffle[LinearRecurrence[{3, -3, 1}, {1, 9, 33}, #], FoldList[#1 + #2 &, 1, 16 Range@ #]] &@ 25 (* Michael De Vlieger, Aug 01 2016, after Vincenzo Librandi at A081585 and Robert G. Wilson v at A069129 *)
PROG
(PARI) a(n)=(-1)^n + 2*n^2 \\ Charles R Greathouse IV, Aug 03 2016
(PARI) Vec((1-x+7*x^2+x^3)/((1-x)^3*(1+x)) + O(x^100)) \\ Colin Barker, Aug 21 2016
CROSSREFS
Cf. A081585(n) = a(2n), A069129(n) = a(2n + 1).
Sequence in context: A328016 A335796 A260477 * A111733 A127193 A262453
KEYWORD
nonn,easy
AUTHOR
STATUS
approved