The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A275496 a(n) = n^2*(2*n^2 + (-1)^n). 4
 0, 1, 36, 153, 528, 1225, 2628, 4753, 8256, 13041, 20100, 29161, 41616, 56953, 77028, 101025, 131328, 166753, 210276, 260281, 320400, 388521, 468996, 559153, 664128, 780625, 914628, 1062153, 1230096, 1413721, 1620900, 1846081, 2098176, 2370753, 2673828 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS All terms of this sequence are triangular numbers. Graphically, for each term of the sequence, one corner of the square of squares (4th power) will be part of the corresponding triangle's hypotenuse if the term is an odd number. Otherwise, it will not be part of it. a(A000129(n)) is a square triangular number. a(2^((A000043(n) - 1)/2)) - 2^A000043(n) is a perfect number. LINKS Colin Barker and Daniel Poveda Parrilla, Table of n, a(n) for n = 0..46340 [n = 1 through 1000 by Colin Barker, Aug 02 2016; and n=1001 to 46340 by Daniel Poveda Parrilla, Aug 04 2016] Index entries for linear recurrences with constant coefficients, signature (2,2,-6,0,6,-2,-2,1). FORMULA a(n) = n^4 + Sum_{k=0..(n^2 - (n mod 2))} 2k. a(n) = A275543(n)*(n^2). From Colin Barker, Aug 01 2016 and Aug 04 2016: (Start) a(n) = n^2*(2*n^2 + (-1)^n). a(n) = 2*n^4 + n^2 for n even. a(n) = 2*n^4 - n^2 for n odd. G.f.: x*(1 +34*x +79*x^2 +156*x^3 +79*x^4 +34*x^5 +x^6) / ((1-x)^5*(1+x)^3). (End) a(n) = n^2*A000217(2n-1) + 2n*A000217(n-(n mod 2)) for n > 0. E.g.f.: x*(2*(1 + 7*x + 6*x^2 + x^3)*exp(x) - exp(-x)). - G. C. Greubel, Aug 05 2016 a(n) = A000217(A077221(n)). a(n) = (A001844(A077221(n)) - 1)/4. EXAMPLE a(5) = 5^4 + Sum_{k=0..(5^2 - (5 mod 2))} 2k = 625 + Sum_{k=0..(25 - 1)} 2k = 625 + 600 = 1225. a(12) = 12^4 + Sum_{k=0..(12^2 - (12 mod 2))} 2k = 20736 + Sum_{k=0..(144 - 0)} 2k = 20736 + 20880 = 41616. MATHEMATICA Table[n^2 ((-1)^n + 2 n^2), {n, 0, 34}] (* or *) CoefficientList[Series[x (1 + 34 x + 79 x^2 + 156 x^3 + 79 x^4 + 34 x^5 + x^6)/((1 - x)^5 (1 + x)^3), {x, 0, 34}], x] (* Michael De Vlieger, Aug 01 2016 *) LinearRecurrence[{2, 2, -6, 0, 6, -2, -2, 1}, {0, 1, 36, 153, 528, 1225, 2628, 4753}, 40] (* Harvey P. Dale, Sep 10 2016 *) PROG (PARI) a(n)=n=n^2; if(n%2, 2*n-1, 2*n+1)*n \\ Charles R Greathouse IV, Jul 30 2016 (PARI) concat(0, Vec(x*(1+34*x+79*x^2+156*x^3+79*x^4+34*x^5+x^6)/((1-x)^5*(1+x)^3) + O(x^100))) \\ Colin Barker, Aug 01 2016 CROSSREFS Cf. A000040, A000129, A000217, A001110, A077221, A275543. Sequence in context: A263120 A034592 A160754 * A117511 A250632 A211728 Adjacent sequences:  A275493 A275494 A275495 * A275497 A275498 A275499 KEYWORD nonn,easy AUTHOR Daniel Poveda Parrilla, Jul 30 2016 EXTENSIONS New name from Colin Barker, Aug 04 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 13 22:21 EDT 2020. Contains 335716 sequences. (Running on oeis4.)