login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111733
a(n) = a(n-1) + a(n-2) + 7 where a(0) = a(1) = 1.
1
1, 1, 9, 17, 33, 57, 97, 161, 265, 433, 705, 1145, 1857, 3009, 4873, 7889, 12769, 20665, 33441, 54113, 87561, 141681, 229249, 370937, 600193, 971137, 1571337, 2542481, 4113825, 6656313, 10770145, 17426465, 28196617, 45623089, 73819713, 119442809
OFFSET
0,3
COMMENTS
This is the sequence A(1,1;1,1;7)of the family of sequences [a,b:c,d:k] considered by Gary Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 17 2010
FORMULA
From R. J. Mathar, Jul 08 2009: (Start)
G.f.: (1-x+7*x^2)/((x-1)*(x^2+x-1)).
a(n) = 8*A000045(n+1) - 7 = 2*a(n-1) - a(n-3). (End)
a(n+1) - a(n) = A022091(n). - R. J. Mathar, Apr 22 2013
EXAMPLE
a(2) = a(0) + a(1) + 7 = 1 + 1 + 7 = 9, which is the third term in the sequence.
MATHEMATICA
a[0] := 1; a[1] := 1; a[n_] := a[n - 1] + a[n - 2] + 7; Table[a[n], {n, 0, 30}] (* Stefan Steinerberger, Mar 10 2006 *)
LinearRecurrence[{2, 0, -1}, {1, 1, 9}, 40] (* Vincenzo Librandi, Sep 16 2015 *)
PROG
(Magma) I:=[1, 1, 9]; [n le 3 select I[n] else 2*Self(n-1)-Self(n-3): n in [1..40]]; // Vincenzo Librandi, Sep 16 2015
CROSSREFS
Sequence in context: A335796 A260477 A275543 * A127193 A262453 A197344
KEYWORD
nonn,easy
AUTHOR
Parthasarathy Nambi, Nov 18 2005
EXTENSIONS
More terms from Stefan Steinerberger, Mar 10 2006
More terms from Brian Lauer (bel136(AT)psu.edu), Apr 05 2006
STATUS
approved