|
|
A111733
|
|
a(n) = a(n-1) + a(n-2) + 7 where a(0) = a(1) = 1.
|
|
1
|
|
|
1, 1, 9, 17, 33, 57, 97, 161, 265, 433, 705, 1145, 1857, 3009, 4873, 7889, 12769, 20665, 33441, 54113, 87561, 141681, 229249, 370937, 600193, 971137, 1571337, 2542481, 4113825, 6656313, 10770145, 17426465, 28196617, 45623089, 73819713, 119442809
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
This is the sequence A(1,1;1,1;7)of the family of sequences [a,b:c,d:k] considered by Gary Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 17 2010
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (1-x+7*x^2)/((x-1)*(x^2+x-1)).
a(n) = 8*A000045(n+1) - 7 = 2*a(n-1) - a(n-3). (End)
|
|
EXAMPLE
|
a(2) = a(0) + a(1) + 7 = 1 + 1 + 7 = 9, which is the third term in the sequence.
|
|
MATHEMATICA
|
a[0] := 1; a[1] := 1; a[n_] := a[n - 1] + a[n - 2] + 7; Table[a[n], {n, 0, 30}] (* Stefan Steinerberger, Mar 10 2006 *)
|
|
PROG
|
(Magma) I:=[1, 1, 9]; [n le 3 select I[n] else 2*Self(n-1)-Self(n-3): n in [1..40]]; // Vincenzo Librandi, Sep 16 2015
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
More terms from Brian Lauer (bel136(AT)psu.edu), Apr 05 2006
|
|
STATUS
|
approved
|
|
|
|