login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081585 and A069129 interleaved.
2

%I #32 Aug 21 2022 04:18:38

%S 1,1,9,17,33,49,73,97,129,161,201,241,289,337,393,449,513,577,649,721,

%T 801,881,969,1057,1153,1249,1353,1457,1569,1681,1801,1921,2049,2177,

%U 2313,2449,2593,2737,2889,3041,3201,3361,3529,3697,3873,4049,4233,4417,4609

%N A081585 and A069129 interleaved.

%C a(A000129(n)) is a square.

%C (n^2)*a(n) = A275496(n) which is a triangular number.

%C (A000129(n)^2)*a(A000129(n)) = A275496(A000129(n)) = A001110(n) which is a square triangular number.

%C a(2n+1)/a(2n) is convergent to 1.

%H Daniel Poveda Parrilla, <a href="/A275543/b275543.txt">Table of n, a(n) for n = 0..500000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1).

%F a(0) = 1; a(n) = A275496(n)/(n^2) for n > 0.

%F From _Colin Barker_, Aug 01 2016: (Start)

%F a(n) = (2*n^2 + (-1)^n).

%F a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n > 3.

%F G.f.: (1 -x +7*x^2 +x^3) / ((1 - x)^3*(1 + x)).

%F (End)

%F From _Daniel Poveda Parrilla_, Aug 18 2016: (Start)

%F a(2n) = A077221(2n) + 1.

%F a(2n + 1) = A077221(2n + 1). (End)

%F Sum_{n>=0} 1/a(n) = (1 + (tan(c) + coth(c))*c)/2, where c = Pi/(2*sqrt(2)) is A093954. - _Amiram Eldar_, Aug 21 2022

%e a(1) = A275496(1) = 1.

%e a(5) = A275496(5)/25 = 1225/25 = 49.

%e a(7) = A275496(7)/49 = 4753/49 = 97.

%e a(12) = A275496(12)/144 = 41616/144 = 289.

%t CoefficientList[Series[(1 - x + 7 x^2 + x^3)/((1 - x)^3 (1 + x)), {x, 0, 48}], x] (* or as defined *)

%t Riffle[LinearRecurrence[{3, -3, 1}, {1, 9, 33}, #], FoldList[#1 + #2 &, 1, 16 Range@ #]] &@ 25 (* _Michael De Vlieger_, Aug 01 2016, after _Vincenzo Librandi_ at A081585 and _Robert G. Wilson v_ at A069129 *)

%o (PARI) a(n)=(-1)^n + 2*n^2 \\ _Charles R Greathouse IV_, Aug 03 2016

%o (PARI) Vec((1-x+7*x^2+x^3)/((1-x)^3*(1+x)) + O(x^100)) \\ _Colin Barker_, Aug 21 2016

%Y Cf. A081585(n) = a(2n), A069129(n) = a(2n + 1).

%Y Cf. A000129, A000217, A000290, A001110, A077221, A093954, A275496.

%K nonn,easy

%O 0,3

%A _Daniel Poveda Parrilla_, Aug 01 2016