OFFSET
1,2
COMMENTS
k, k+1, k+2, k+4, k+5, and k+6 are squarefree; k+3 is divisible by 4 but no higher power of 2 and no other prime squared.
From Amiram Eldar, Nov 28 2023: (Start)
All the terms are of the form 8*k + 1.
The numbers of terms not exceeding 10^k for k = 1, 2, ... , are 1, 2, 14, 140, 1384, 13774, 137784, 1378053, 13779491, 137794128, 1377940943, ... . Apparently, the asymptotic density of this sequence exists and equals 0.0137794... . (End)
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
MATHEMATICA
sfQ[n_]:=Module[{c4=FactorInteger[n[[4]]], r=Drop[n, {4}]}, First[c4] == {2, 2} && Max[Transpose[Rest[c4]][[2]]]==1&&And@@SquareFreeQ/@r]; Join[{1}, Transpose[ Select[Partition[Range[2, 3600], 7, 1], sfQ]][[1]]] (* Harvey P. Dale, Nov 22 2011 *)
PROG
(PARI) ap(n)={forstep(k=1, n, 8,
if(issquarefree(k)&&issquarefree(k+1)&&issquarefree(k+2)&&
issquarefree((k+3)\2)&&
issquarefree(k+4)&&issquarefree(k+5)&&issquarefree(k+6),
print1(k", ")))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Franklin T. Adams-Watters, Aug 10 2011
STATUS
approved