login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194003
Number of prime factors of n^8 + 1, counted with multiplicity.
2
0, 1, 1, 3, 1, 3, 2, 3, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 4, 3, 3, 2, 6, 2, 4, 3, 3, 2, 2, 2, 4, 3, 3, 2, 4, 6, 3, 2, 2, 4, 3, 3, 2, 3, 3, 2, 2, 2, 2, 3, 3, 2, 5, 2, 3, 2, 4, 4, 4, 3, 6, 2, 5, 2, 2, 2, 5, 2, 5, 4, 4, 3, 4, 3, 5, 4, 2, 3, 4, 2, 4
OFFSET
0,4
COMMENTS
This is to A193330 as A002523(n) = n^4+1 is to A002522(n) = n^2 + 1, and as A060890(n) = n^8+1 is to A002522(n) = n^2 + 1. a(n) = 1 when n^8+1 is prime, iff n is in {1, 2, 4} unless there is a larger Fermat prime than 65537.
LINKS
FORMULA
a(n) = A001222(A060890(n)) = bigomega(n^8+1) or Omega(n^8+1)
EXAMPLE
a(10) = 2 because 10^8 + 1 = 100000001 = 17 * 5882353 has 2 prime factors.
a(40) = 6 because 40^8 + 1 = 6553600000001 = 17^2 * 113 * 337 * 641 * 929 has 6 prime factors (with multiplicity) and is the smallest example not squarefree.
MATHEMATICA
Join[{0}, Table[Total[Transpose[FactorInteger[n^8 + 1]][[2]]], {n, 50}]]
PrimeOmega[Range[0, 90]^8+1] (* Harvey P. Dale, May 27 2018 *)
PROG
(PARI) a(n) = bigomega(n^8+1); \\ Michel Marcus, Feb 09 2020
(Magma) [0] cat [&+[p[2]: p in Factorization(n^8+1)]:n in [1..90]]; // Marius A. Burtea, Feb 09 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Aug 10 2011
STATUS
approved