login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194000
Triangular array: the self-fission of (p(n,x)), where sum{F(k+1)*x^(n-k) : 0<=k<=n}, where F=A000045 (Fibonacci numbers).
3
1, 2, 3, 3, 5, 9, 5, 8, 15, 24, 8, 13, 24, 39, 64, 13, 21, 39, 63, 104, 168, 21, 34, 63, 102, 168, 272, 441, 34, 55, 102, 165, 272, 440, 714, 1155, 55, 89, 165, 267, 440, 712, 1155, 1869, 3025, 89, 144, 267, 432, 712, 1152, 1869, 3024, 4895, 7920, 144, 233
OFFSET
0,2
COMMENTS
See A193917 for the self-fusion of the same sequence of polynomials. (Fusion is defined at A193822; fission, at A193842; see A202503 and A202453 for infinite-matrix representations of fusion and fission.)
...
First five rows of P (triangle of coefficients of polynomials p(n,x)):
1
1...1
1...1...2
1...1...2...3
1...1...2...3...5
First eight rows of A194000:
1
2....3
3....5....9
5....8....15...24
8....13...24...39...64
13...21...29...63...104...168
21...34...63...102..168...272...441
34...55...102..165..272...440...714..1155
...
col 1: A000045
col 2: A000045
col 3: A022086
col 4: A022086
col 5: A022091
col 6: A022091
right edge, d(n,n): A064831
d(n,n-1): A059840
d(n,n-2): A080097
d(n,n-3): A080143
d(n,n-4): A080144
...
Suppose n is an odd positive integer and d(n+1,x) is the polynomial matched to row n+1 of A194000 as in the Mathematica program (and definition of fission at A193842), where the first row is counted as row 0.
EXAMPLE
First six rows:
1
2....3
3....5....9
5....8....15...24
8....13...24...39...64
13...21...29...63...104...168
...
Referring to the matrix product for fission at A193842,
the row (5,8,15,24) is the product of P(4) and QQ, where
P(4)=(p(4,4), p(4,3), p(4,2), p(4,1))=(5,3,2,1); and
QQ is the 4x4 matrix
(1..1..2..3)
(0..1..1..2)
(0..0..1..1)
(0..0..0..1).
MATHEMATICA
z = 11;
p[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
q[n_, x_] := p[n, x];
p1[n_, k_] := Coefficient[p[n, x], x^k];
p1[n_, 0] := p[n, x] /. x -> 0;
d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
h[n_] := CoefficientList[d[n, x], {x}]
TableForm[Table[Reverse[h[n]], {n, 0, z}]]
Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A194000 *)
TableForm[Table[h[n], {n, 0, z}]]
Flatten[Table[h[n], {n, -1, z}]] (* A194001 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 11 2011
STATUS
approved