login
A202503
Fibonacci self-fission matrix, by antidiagonals.
6
1, 1, 2, 2, 3, 3, 3, 5, 5, 5, 5, 8, 9, 8, 8, 8, 13, 14, 15, 13, 13, 13, 21, 23, 24, 24, 21, 21, 21, 34, 37, 39, 39, 39, 34, 34, 34, 55, 60, 63, 64, 63, 63, 55, 55, 55, 89, 97, 102, 103, 104, 102, 102, 89, 89, 89, 144, 157, 165, 167, 168, 168, 165, 165, 144, 144, 144
OFFSET
1,3
COMMENTS
The Fibonacci self-fission matrix, F, is the fission P^^Q, where P and Q are the matrices given at A202502 and A202451. See A193842 for the definition of fission.
antidiagonal sums: (1, 3, 8, 18, 38, ...), A064831
diagonal (1, 5, 14, 39, ...), A119996
diagonal (2, 8, 23, 63, ...), A180664
diagonal (2, 5, 15, 39, ...), A059840
diagonal (3, 8, 24, 63, ...), A080097
diagonal (5, 13, 39, 102, ...), A080143
diagonal (8, 21, 63, 165, ...), A080144
All the principal submatrices are invertible, and the terms in the inverses are in {-3,-2,-1,0,1,2,3}.
LINKS
Clark Kimberling, Fusion, Fission, and Factors, Fib. Q., 52 (2014), 195-202.
EXAMPLE
Northwest corner:
1....1....2....3....5.....8....13...21
2....3....5....8...13....21....34...55
3....5....9...14...23....37....60...97
5....8...15...24...39....63...102...165
8...13...24...39...64...103...167...270
MATHEMATICA
n = 14;
Q = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[Fibonacci[k], {k, 1, n}]];
Qt = Transpose[Q]; P1 = Qt - IdentityMatrix[n];
P = P1[[Range[2, n], Range[1, n]]];
F = P.Q;
Flatten[Table[P[[i]][[k + 1 - i]], {k, 1, n - 1}, {i, 1, k}]] (* A202502 as a sequence *)
Flatten[Table[Q[[i]][[k + 1 - i]], {k, 1, n - 1}, {i, 1, k}]] (* A202451 as a sequence *)
Flatten[Table[F[[i]][[k + 1 - i]], {k, 1, n - 1}, {i, 1, k}]] (* A202503 as a sequence *)
TableForm[P] (* A202502, modified lower triangular Fibonacci array *)
TableForm[Q] (* A202451, upper tri. Fibonacci array *)
TableForm[F] (* A202503, Fibonacci fission array *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Dec 20 2011
STATUS
approved