login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180664
Golden Triangle sums: a(n) = a(n-1) + A001654(n+1) with a(0)=0.
8
0, 2, 8, 23, 63, 167, 440, 1154, 3024, 7919, 20735, 54287, 142128, 372098, 974168, 2550407, 6677055, 17480759, 45765224, 119814914, 313679520, 821223647, 2149991423, 5628750623, 14736260448, 38580030722, 101003831720
OFFSET
0,2
COMMENTS
The a(n+1) (terms doubled) are the Kn13 sums of the Golden Triangle A180662. See A180662 for information about these knight and other chess sums.
FORMULA
a(n+1) = Sum_{k=0..n} A180662(2*n-k+2, k+2).
a(n) = (-15 + (-1)^n + (6-2*A)*A^(-n-1) + (6-2*B)*B^(-n-1))/10 with A=(3+sqrt(5))/2 and B=(3-sqrt(5))/2.
G.f.: (2*x+2*x^2-x^3)/(1-3*x-x^4+3*x^3).
a(n) = Sum_{i=0..n-1} F(i+2)*F(i+3), where F(i) = A000045(i). - Rigoberto Florez, Jul 07 2020
a(n) = (1/10)*((-1)^n - 15 + 2*Lucas(2*n+4)). - G. C. Greubel, Jan 21 2022
MAPLE
nmax:=26: with(combinat): for n from 0 to nmax+1 do A001654(n):=fibonacci(n) * fibonacci(n+1) od: a(0):=0: for n from 1 to nmax do a(n) := a(n-1)+A001654(n+1) od: seq(a(n), n=0..nmax);
MATHEMATICA
Table[Sum[Fibonacci[i+2]*Fibonacci[i+3], {i, 0, n-1}], {n, 0, 40}] (* Rigoberto Florez, Jul 07 2020 *)
LinearRecurrence[{3, 0, -3, 1}, {0, 2, 8, 23}, 30] (* Harvey P. Dale, Mar 30 2023 *)
PROG
(Magma) [(1/10)*((-1)^n - 15 + 2*Lucas(2*n+4)): n in [0..40]]; // G. C. Greubel, Jan 21 2022
(Sage) [(1/10)*((-1)^n - 15 + 2*lucas_number2(2*n+4, 1, -1)) for n in (0..40)] # G. C. Greubel, Jan 21 2022
KEYWORD
easy,nonn
AUTHOR
Johannes W. Meijer, Sep 21 2010
STATUS
approved