OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,0,-3,1).
FORMULA
a(n+1) = Sum_{k=0..n} A180662(2*n-k+2, k+2).
a(n) = (-15 + (-1)^n + (6-2*A)*A^(-n-1) + (6-2*B)*B^(-n-1))/10 with A=(3+sqrt(5))/2 and B=(3-sqrt(5))/2.
G.f.: (2*x+2*x^2-x^3)/(1-3*x-x^4+3*x^3).
a(n) = Sum_{i=0..n-1} F(i+2)*F(i+3), where F(i) = A000045(i). - Rigoberto Florez, Jul 07 2020
a(n) = (1/10)*((-1)^n - 15 + 2*Lucas(2*n+4)). - G. C. Greubel, Jan 21 2022
MAPLE
MATHEMATICA
Table[Sum[Fibonacci[i+2]*Fibonacci[i+3], {i, 0, n-1}], {n, 0, 40}] (* Rigoberto Florez, Jul 07 2020 *)
LinearRecurrence[{3, 0, -3, 1}, {0, 2, 8, 23}, 30] (* Harvey P. Dale, Mar 30 2023 *)
PROG
(Magma) [(1/10)*((-1)^n - 15 + 2*Lucas(2*n+4)): n in [0..40]]; // G. C. Greubel, Jan 21 2022
(Sage) [(1/10)*((-1)^n - 15 + 2*lucas_number2(2*n+4, 1, -1)) for n in (0..40)] # G. C. Greubel, Jan 21 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Johannes W. Meijer, Sep 21 2010
STATUS
approved