OFFSET
0,4
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,2,0,-2,-2,1).
FORMULA
a(n) = -floor(g(Fibonacci(n+1))) where g(x) = (1-x^2)^2/(-4*x^2).
G.f.: x^2/( (1-x)*(1+x)*(1+x+x^2)*(1-3*x+x^2) ). - R. J. Mathar, Jun 20 2015
a(n) - a(n-2) = A182890(n-1). - R. J. Mathar, Jun 20 2015
a(n) = (1/60)*((-1)^n*(6 - 5*ChebyshevU(n, 1/2) + 10*ChebyshevU(n-1, 1/2)) - (10 - 9*ChebyshevU(n, 3/2) + 6*ChebyshevU(n-1, 3/2))). - G. C. Greubel, Jan 20 2022
a(n) = floor((2*Fibonacci(2*n+1) + Fibonacci(2*n+2) + 2)/20). - Michael Somos, Sep 05 2023
EXAMPLE
G.f. = x^2 + 2*x^3 + 6*x^4 + 16*x^5 + 42*x^6 + 110*x^7 + 289*x^8 + ... - Michael Somos, Sep 05 2023
MAPLE
MATHEMATICA
LinearRecurrence[{2, 2, 0, -2, -2, 1}, {0, 0, 1, 2, 6, 16}, 40] (* modified by G. C. Greubel, Jan 20 2022 *)
a[ n_] := Floor[(2*Fibonacci[2*n+1] + Fibonacci[2*n+2] + 2)/20]; (* Michael Somos, Sep 05 2023 *)
PROG
(Magma)
function A115730(n)
if n lt 3 then return Floor(n/2);
else return A115730(n-3) + Fibonacci(n-1)*Fibonacci(n);
end if; return A115730;
end function;
[A115730(n): n in [0..40]]; // G. C. Greubel, Jan 20 2022
(Sage)
U=chebyshev_U
def A115730(n): return (1/60)*((-1)^n*(6 - 5*U(n, 1/2) + 10*U(n-1, 1/2)) - (10 - 9*U(n, 3/2) + 6*U(n-1, 3/2)))
[A115730(n) for n in (0..40)] # G. C. Greubel, Jan 20 2022
(PARI) {a(n) = (2*fibonacci(2*n+1) + fibonacci(2*n+2) + 2)\20}; /* Michael Somos, Sep 05 2023 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Mar 13 2006
EXTENSIONS
Corrected and information added by Johannes W. Meijer, Sep 22 2010
Edited by Editors-in-Chief. - N. J. A. Sloane, Jun 20 2015
STATUS
approved