login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358464
a(n) is the greatest m such that Sum_{k = 1..m} 1/(1 + n*k) <= 1.
1
2, 6, 16, 42, 110, 288, 761, 2020, 5388, 14417, 38681, 103994, 280032, 755031, 2037848, 5504884, 14880978, 40250609, 108926101, 294902398, 798703663, 2163878141
OFFSET
1,1
COMMENTS
This sequence coincidences with 2*Fibonacci(2*n) (A025169) for the first 6 terms.
LINKS
David Borwein and Jonathan M. Borwein, Some Remarkable Properties of Sinc and Related Integrals, The Ramanujan Journal, 5 (2001) 73 - 89.
Hanspeter Schmid, Two curious integrals and a graphic proof, Elemente der Mathematik, 69 (2014) 11 - 17.
FORMULA
ceiling(digamma(a(n)+(1/n)+1) - digamma((1/n)+1)) = n.
Integral_{x=0..oo} Product_{k=0..m} sinc(x/(n*k+1)) dx = Pi for 0 <= m <= a(n). See links Schmid and Borwein.
ceiling(Sum_{m = 0..oo} ( 1/(m+1) * Sum_{k = 0..m} (-1)^k*binomial(m, k)*log( (a(n)+(1/n)+1+k) / ((1/n)+1+k) ) )) = n.
a(n) ~ floor(exp(n + digamma(1+(1/n))) - (1/2) - (1/n)). This appears to be accurate for at least n < 22.
EXAMPLE
a(2) = 6 because Sum_{m = 1..a(2)} 1/(1+2*m) = 43024/45045 < 1, but Sum_{m = 1..a(2)+1} 1/(1+2*m) = 46027/45045 > 1.
PROG
(PARI) a(n) = {my(k = 2*fibonacci(2*n)-1); my(b = (psi(k+(1/n))-psi(1+(1/n)))/n); until(b > 1, b = b+(1/(1+n*k)); k=k+1 ); k-2}
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Thomas Scheuerle, Nov 18 2022
STATUS
approved