login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156664
Binomial transform of A052551.
1
1, 2, 6, 16, 42, 108, 274, 688, 1714, 4244, 10458, 25672, 62826, 153372, 373666, 908896, 2207842, 5357348, 12988074, 31464568, 76179354, 184347564, 445923058, 1078290832, 2606699026, 6300077492, 15223631226, 36780894376, 88852528842, 214620169788
OFFSET
0,2
FORMULA
A007318 * A052551, where A052551 = (1, 1, 3, 3, 7, 7, 15, 15,...).
G.f.: (x^2 - 2*x + 1)/(2*x^3 + 3*x^2 - 4*x + 1). [Alexander R. Povolotsky, Feb 15 2009]
a(n) = 2*A000129(n+1)-2^n. [R. J. Mathar, Jun 15 2009]
a(n) = -2^n + (1-1/sqrt(2))*(1-sqrt(2))^n + (1+1/sqrt(2))*(1+sqrt(2))^n. - Alexander R. Povolotsky, Aug 16 2012
a(n+3) = -2*a(n) - 3*a(n+1) + 4*a(n+2). - Alexander R. Povolotsky, Aug 16 2012
EXAMPLE
a(3) = 16 = (1, 3, 3, 1) dot (1, 1, 3, 3) = (1 + 3 + 9 + 3).
MATHEMATICA
CoefficientList[Series[(x^2-2x+1)/(2x^3+3x^2-4x+1), {x, 0, 40}], x] (* or *) LinearRecurrence[{4, -3, -2}, {1, 2, 6}, 40] (* Harvey P. Dale, Apr 20 2013 *)
PROG
(PARI) x='x+O('x^50); Vec((x^2-2*x+1)/(2*x^3+3*x^2-4*x+1)) \\ G. C. Greubel, Feb 24 2017
CROSSREFS
Sequence in context: A217194 A304662 A296625 * A025169 A111282 A358464
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Feb 12 2009
EXTENSIONS
Corrected and extended by Harvey P. Dale, Apr 20 2013
STATUS
approved