login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224232
a(n) = n! if n <= 3, otherwise a(n) = 2*(a(n-1) + a(n-3)) + a(n-2).
6
1, 1, 2, 6, 16, 42, 112, 298, 792, 2106, 5600, 14890, 39592, 105274, 279920, 744298, 1979064, 5262266, 13992192, 37204778, 98926280, 263041722, 699419280, 1859732842, 4944968408, 13148508218, 34961450528, 92961346090, 247181159144, 657246565434, 1747596982192, 4646802848106, 12355695809272, 32853388431034, 87356078367552, 232276936784682
OFFSET
0,3
COMMENTS
Also the number of permutations that are sortable after two passes through a pop stack. (See the Pudwell-Smith link.) - Lara Pudwell, Jun 01 2017
LINKS
G. Aleksandrowich et al., Permutations with forbidden patterns and polyominoes on a twisted cylinder of width 3, Discrete Math., 313 (2013), 1078-1086.
Anders Claesson and Bjarki Ágúst Guðmundsson, Enumerating permutations sortable by k passes through a pop-stack, arXiv:1710.04978 [math.CO], 2017.
Lara Pudwell and Rebecca Smith, Sorting with Pop Stacks, Special Session on Algebraic and Enumerative Combinatorics with Applications, AMS Central Section Spring Meeting, 2017.
Lara Pudwell and Rebecca Smith, Two-stack-sorting with pop stacks, arXiv:1801.05005 [math.CO], 2018.
FORMULA
G.f.: (x^3 + x^2 + x - 1) / (2*x^3 + x^2 + 2*x - 1). - Colin Barker, Jun 07 2015
a(n) = (b(n) + b(n-1))/2 for b(n) = A077996(n). - Hanzhang Fang, Aug 27 2022
MATHEMATICA
CoefficientList[Series[(x^3 + x^2 + x - 1)/(2 x^3 + x^2 + 2 x - 1), {x, 0, 35}], x] (* Michael De Vlieger, Jun 01 2017 *)
LinearRecurrence[{2, 1, 2}, {1, 1, 2, 6}, 40] (* Harvey P. Dale, Aug 28 2023 *)
PROG
(PARI) Vec((x^3+x^2+x-1)/(2*x^3+x^2+2*x-1) + O(x^100)) \\ Colin Barker, Jun 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 11 2013
STATUS
approved