The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A224229 a(0)=2; for n>0, a(n) = smallest prime not occurring earlier in the sequence such that a(n-1)+a(n) is a multiple of floor(sqrt(n)). If no such prime exists, the sequence terminates. 3
 2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 29, 37, 41, 43, 47, 61, 59, 53, 67, 73, 71, 89, 79, 97, 83, 107, 103, 127, 113, 137, 163, 157, 173, 167, 193, 197, 109, 101, 139, 131, 151, 149, 181, 179, 199, 191, 211, 227, 223, 239, 251, 281, 293, 337, 307, 379, 349, 421, 419, 449, 433, 463, 461, 491, 229, 283, 269, 331, 277, 347, 317, 443, 373, 467, 389, 499, 397, 523 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Is this sequence infinite and, if so, is it a permutation of the primes? For this sequence the answers are probably both Yes. A134204 and A224223 are similar sequences whose status is also unknown, while A224221 and A224222 are similar sequences which terminate after about 20 terms. LINKS N. J. A. Sloane, Table of n, a(n) for n = 0..9999 MAPLE # A224229 Digits:=100; M1:=100000; hit:=Array(1..M1); M2:=1000; a:=[2]; hit[1]:=1; p:=2; for n from 1 to M2 do t1:=floor(sqrt(n)); sw1:=-1; for i from 2 to M1 do q:=ithprime(i); if ( (p+q) mod t1 ) = 0 and hit[i] <> 1 then sw1:=1; break; fi; od: if sw1 < 0 then lprint("ERROR", n, a); break; fi; a:=[op(a), q]; hit[i]:=1; p:=q; od: a; CROSSREFS Cf. A134204, A224221, A224222, A224223. Sequence in context: A342063 A067903 A341934 * A358798 A102348 A161929 Adjacent sequences: A224226 A224227 A224228 * A224230 A224231 A224232 KEYWORD nonn,look AUTHOR N. J. A. Sloane, Apr 10 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 20:23 EST 2023. Contains 367447 sequences. (Running on oeis4.)