|
|
A224227
|
|
a(n) = (1/50)*((15*n^2-20*n+4)*Fibonacci(n) - (5*n^2-6*n)*A000032(n)).
|
|
1
|
|
|
0, 0, 0, 1, 2, 7, 16, 38, 82, 173, 352, 701, 1368, 2628, 4980, 9329, 17302, 31811, 58040, 105178, 189446, 339373, 604964, 1073593, 1897488, 3341160, 5863080, 10256065, 17888138, 31115071, 53985856, 93447278, 161397754, 278184461, 478550344, 821734901, 1408610088, 2410719084, 4119433884, 7029086705, 11977419742, 20382654971, 34643298728, 58811818210
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
The right-hand side of a binomial-coefficient identity.
From Steven Finch, Mar 22 2020: (Start)
a(n+2) is the total binary weight squared of all A000045(n+2) binary sequences of length n not containing any adjacent 1's.
The only three 2-bitstrings without adjacent 1's are 00, 01 and 10. The bitsums squared of these are 0, 1 and 1. Adding these give a(4)=2.
The only five 3-bitstrings without adjacent 1's are 000, 001, 010, 100 and 101. The bitsums squared of these are 0, 1, 1, 1 and 4. Adding these give a(5)=7.
The only eight 4-bitstrings without adjacent 1's are 0000, 0001, 0010, 0100, 1000, 0101, 1010 and 1001. The bitsums squared of these are 0, 1, 1, 1, 1, 4, 4, and 4. Adding these give a(6)=16. (End)
|
|
LINKS
|
Table of n, a(n) for n=0..43.
Steven Finch, Cantor-solus and Cantor-multus Distributions, arXiv:2003.09458 [math.CO], 2020.
N. Gauthier (Proposer), Problem H-703, Fib. Quart., 50 (2012), 379-381.
Index entries for linear recurrences with constant coefficients, signature (3,0,-5,0,3,1).
|
|
FORMULA
|
a(n) = Sum_{k=0..n-1} k^2*binomial(n-k-1,k).
G.f.: -x^3*(x^2-x+1)/(x^2+x-1)^3. - Mark van Hoeij, Apr 10 2013
a(n+3) = A001628(n) - A001628(n-1) + A001628(n-2). - R. J. Mathar, May 23 2014
E.g.f.: 2*exp(x/2)*(sqrt(5)*(2 + 5*x^2)*sinh(sqrt(5)*x/2) - 5*x*cosh(sqrt(5)*x/2))/125. - Stefano Spezia, Mar 20 2023
|
|
MATHEMATICA
|
LinearRecurrence[{3, 0, -5, 0, 3, 1}, {0, 0, 0, 1, 2, 7}, 50] (* Harvey P. Dale, Jan 22 2016 *)
Table[((15 n^2 - 20 n + 4) Fibonacci[n] - (5 n - 6) n LucasL[n])/50, {n, 0, 30}] (* Vladimir Reshetnikov, Oct 10 2016 *)
|
|
PROG
|
(PARI) concat([0, 0, 0], Vec((x^2-x+1)/(x^2+x-1)^3+O(x^96))) \\ Charles R Greathouse IV, Mar 19 2014
|
|
CROSSREFS
|
Cf. A000032, A000045, A001628.
Sequence in context: A131405 A269963 A176805 * A260505 A042243 A293378
Adjacent sequences: A224224 A224225 A224226 * A224228 A224229 A224230
|
|
KEYWORD
|
nonn,easy,changed
|
|
AUTHOR
|
N. J. A. Sloane, Apr 09 2013
|
|
STATUS
|
approved
|
|
|
|