login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A224227 a(n) = (1/50)*((15*n^2-20*n+4)*Fibonacci(n) - (5*n^2-6*n)*A000032(n)). 1
0, 0, 0, 1, 2, 7, 16, 38, 82, 173, 352, 701, 1368, 2628, 4980, 9329, 17302, 31811, 58040, 105178, 189446, 339373, 604964, 1073593, 1897488, 3341160, 5863080, 10256065, 17888138, 31115071, 53985856, 93447278, 161397754, 278184461, 478550344, 821734901, 1408610088, 2410719084, 4119433884, 7029086705, 11977419742, 20382654971, 34643298728, 58811818210 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

The right-hand side of a binomial-coefficient identity.

From Steven Finch, Mar 22 2020: (Start)

a(n+2) is the total binary weight squared of all A000045(n+2) binary sequences of length n not containing any adjacent 1's.

The only three 2-bitstrings without adjacent 1's are 00, 01 and 10. The bitsums squared of these are 0, 1 and 1. Adding these give a(4)=2.

The only five 3-bitstrings without adjacent 1's are 000, 001, 010, 100 and 101. The bitsums squared of these are 0, 1, 1, 1 and 4. Adding these give a(5)=7.

The only eight 4-bitstrings without adjacent 1's are 0000, 0001, 0010, 0100, 1000, 0101, 1010 and 1001. The bitsums squared of these are 0, 1, 1, 1, 1, 4, 4, and 4. Adding these give a(6)=16. (End)

LINKS

Table of n, a(n) for n=0..43.

Steven Finch, Cantor-solus and Cantor-multus Distributions, arXiv:2003.09458 [math.CO], 2020.

N. Gauthier (Proposer), Problem H-703, Fib. Quart., 50 (2012), 379-381.

Index entries for linear recurrences with constant coefficients, signature (3,0,-5,0,3,1).

FORMULA

a(n) = Sum_{k=0..n-1} k^2*binomial(n-k-1,k).

G.f.: -x^3*(x^2-x+1)/(x^2+x-1)^3. - Mark van Hoeij, Apr 10 2013

a(n+3) = A001628(n) - A001628(n-1) + A001628(n-2). - R. J. Mathar, May 23 2014

E.g.f.: 2*exp(x/2)*(sqrt(5)*(2 + 5*x^2)*sinh(sqrt(5)*x/2) - 5*x*cosh(sqrt(5)*x/2))/125. - Stefano Spezia, Mar 20 2023

MATHEMATICA

LinearRecurrence[{3, 0, -5, 0, 3, 1}, {0, 0, 0, 1, 2, 7}, 50] (* Harvey P. Dale, Jan 22 2016 *)

Table[((15 n^2 - 20 n + 4) Fibonacci[n] - (5 n - 6) n LucasL[n])/50, {n, 0, 30}] (* Vladimir Reshetnikov, Oct 10 2016 *)

PROG

(PARI) concat([0, 0, 0], Vec((x^2-x+1)/(x^2+x-1)^3+O(x^96))) \\ Charles R Greathouse IV, Mar 19 2014

CROSSREFS

Cf. A000032, A000045, A001628.

Sequence in context: A131405 A269963 A176805 * A260505 A042243 A293378

Adjacent sequences: A224224 A224225 A224226 * A224228 A224229 A224230

KEYWORD

nonn,easy,changed

AUTHOR

N. J. A. Sloane, Apr 09 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 22 18:49 EDT 2023. Contains 361433 sequences. (Running on oeis4.)