login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224226
a(0)=1; thereafter a(n) =s(n,3)-s(n,4)-s(n,6)+s(n,12), where s(n,k) = sigma(n/k) if k divides n, otherwise 0.
2
1, 0, 0, 1, -1, 0, 2, 0, -3, 4, 0, 0, 1, 0, 0, 6, -7, 0, 8, 0, -6, 8, 0, 0, -1, 0, 0, 13, -8, 0, 12, 0, -15, 12, 0, 0, 7, 0, 0, 14, -18, 0, 16, 0, -12, 24, 0, 0, -5, 0, 0, 18, -14, 0, 26, 0, -24, 20, 0, 0, 6, 0, 0, 32, -31, 0, 24, 0, -18, 24, 0, 0, 5, 0, 0, 31, -20, 0, 28
OFFSET
0,7
LINKS
K. S. Williams, The parents of Jacobi's four squares theorem are unique, Amer. Math. Monthly, 120 (2013), 329-345.
MAPLE
s := proc(n, k)
if modp(n, k) = 0 then
numtheory[sigma](n/k) ;
else
0 ;
end if;
end proc:
A224226 := proc(n)
if n = 0 then
1;
else
s(n, 3)-s(n, 4)-s(n, 6)+s(n, 12) ;
end if;
end proc: # R. J. Mathar, Nov 14 2018
MATHEMATICA
s[n_, k_] := If[Divisible[n, k], DivisorSigma[1, n/k], 0]; a[0] = 1; a[n_] := s[n, 3] - s[n, 4] - s[n, 6] + s[n, 12]; Array[a, 100, 0] (* Amiram Eldar, Aug 17 2019 *)
PROG
(PARI) s(n, k) = if (!(n%k), sigma(n/k), 0);
a(n) = if (n==0, 1, s(n, 3)-s(n, 4)-s(n, 6)+s(n, 12)); \\ Michel Marcus, Sep 27 2017
CROSSREFS
Sequence in context: A112476 A370724 A321527 * A153250 A102389 A099091
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Apr 09 2013
STATUS
approved