|
|
A293774
|
|
Number of permutations of length n sortable by 3 passes through a pop-stack.
|
|
6
|
|
|
1, 1, 2, 6, 24, 88, 303, 1033, 3544, 12220, 42164, 145364, 500954, 1726408, 5950050, 20507364, 70680192, 243602952, 839588620, 2893682172, 9973219220, 34373198420, 118468937648, 408309065104, 1407257423576, 4850182474912
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (2*x^10 + 4*x^9 + 2*x^8 + 5*x^7 + 11*x^6 + 8*x^5 + 6*x^4 + 6*x^3 + 2*x^2 + x - 1) / (4*x^10 + 8*x^9 + 4*x^8 + 10*x^7 + 22*x^6 + 16*x^5 + 8*x^4 + 6*x^3 + 2*x^2 + 2*x - 1).
|
|
PROG
|
(PARI) Vec((2*x^10 + 4*x^9 + 2*x^8 + 5*x^7 + 11*x^6 + 8*x^5 + 6*x^4 + 6*x^3 + 2*x^2 + x - 1)/(4*x^10 + 8*x^9 + 4*x^8 + 10*x^7 + 22*x^6 + 16*x^5 + 8*x^4 + 6*x^3 + 2*x^2 + 2*x - 1) + O(x^30))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|