login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A180665 Golden Triangle sums: a(n)=a(n-2)+A001654(n) with a(0)=0 and a(1)=1. 6
0, 1, 2, 7, 17, 47, 121, 320, 835, 2190, 5730, 15006, 39282, 102847, 269252, 704917, 1845491, 4831565, 12649195, 33116030, 86698885, 226980636, 594243012, 1555748412, 4073002212, 10663258237, 27916772486, 73087059235 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The a(n) are the Kn21, Kn22, Kn23, Fi2, and Ze2 sums of the Golden Triangle A180662. Furthermore the a(2*n) are the Kn3, Fi1 (terms doubled) and Ze3 (terms tripled) sums. See A180662 for information about these and other chess sums.

LINKS

Table of n, a(n) for n=0..27.

Index entries for linear recurrences with constant coefficients, signature (2, 3, -3, -2, 1).

FORMULA

a(n) = a(n-2)+A001654(n) with a(0)=0 and a(1)=1.

GF(x) = (-x)/((x-1)*(x+1)^2*(x^2-3*x+1)).

a(n) = ((-1)^(-n-1)*(15+10*n)-25+(16-4*A)*A^(-n-1)+(16-4*B)*B^(-n-1))/100 with A=(3+sqrt(5))/2 and B=(3-sqrt(5))/2.

MAPLE

nmax:=27: with(combinat): for n from 0 to nmax do A001654(n):=fibonacci(n)*fibonacci(n+1) od: a(0):=0: a(1):=1: for n from 2 to nmax do a(n) := a(n-2) + A001654(n) od: seq(a(n), n=0..nmax);

CROSSREFS

Cf. A064831, A180664, A180665, A115730, A180666.

Sequence in context: A178441 A014742 A085411 * A275209 A007049 A133407

Adjacent sequences:  A180662 A180663 A180664 * A180666 A180667 A180668

KEYWORD

easy,nonn

AUTHOR

Johannes W. Meijer, Sep 21 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 16:45 EST 2020. Contains 331172 sequences. (Running on oeis4.)