

A180663


Mirror image of the Golden Triangle: T(n,k) = A001654(nk) for n>=0 and 0<=k<=n.


2



0, 1, 0, 2, 1, 0, 6, 2, 1, 0, 15, 6, 2, 1, 0, 40, 15, 6, 2, 1, 0, 104, 40, 15, 6, 2, 1, 0, 273, 104, 40, 15, 6, 2, 1, 0, 714, 273, 104, 40, 15, 6, 2, 1, 0, 1870, 714, 273, 104, 40, 15, 6, 2, 1, 0, 4895, 1870, 714, 273, 104, 40, 15, 6, 2, 1, 0
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


COMMENTS

This triangle is the mirror image of the Golden Triangle A180662. The terms in the nth row of the triangle are the first (n+1) golden rectangle numbers in reversed order. The golden rectangle numbers are A001654(n)=F(n)*F(n+1), with F(n) the Fibonacci numbers.
The chess sums, see A180662 for their definitions, mirror those of the Golden Triangle: Row1 & Row1; Row 2 & Row2; Kn1 and Kn2; Kn3 and Kn4; Fi1 and Fi2; Ca1 and Ca2; Ca3 and Ca4; Gi1 and Gi2; Gi3 and Gi4; Ze1 and Ze2; Ze3 and Ze4.


LINKS

Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened


FORMULA

T(n,k) = F(nk)*F(nk+1) with F(n) = A000045(n), for n>=0 and 0<=k<=n.


EXAMPLE

The first few rows of this triangle are:
0;
1, 0;
2, 1, 0;
6, 2, 1, 0;
15, 6, 2, 1, 0;
40, 15, 6, 2, 1, 0;


MAPLE

F:= combinat[fibonacci]:
T:= (n, k)> F(nk)*F(nk+1):
seq(seq(T(n, k), k=0..n), n=0..10); # revised Johannes W. Meijer, Sep 13 2012


PROG

(Haskell)
a180663 n k = a180663_tabl !! n !! k
a180663_row n = a180663_tabl !! n
a180663_tabl = map reverse a180662_tabl
 Reinhard Zumkeller, Jun 08 2013


CROSSREFS

Cf. A180662 (Golden Triangle), A001654 (Golden Rectangle numbers), A000045 (F(n)).
The triangle sums lead to: A064831 (Row1, Kn21, Kn22, Kn3, Ca2, Ca3, Gi2, Gi3), A077916 (Row2), A180664 (Kn23), A180665 (Kn11, Kn12, Kn13, Fi1, Ze1), A180665(2*n) (Kn4, Fi2, Ze4), A115730(n+1) (Ca1, Ze3), A115730(3*n+1) (Ca4, Ze2), A180666 (Gi1), A180666(4*n) (Gi4).
Sequence in context: A129462 A122930 A066387 * A301924 A262071 A011312
Adjacent sequences: A180660 A180661 A180662 * A180664 A180665 A180666


KEYWORD

easy,nonn,tabl


AUTHOR

Johannes W. Meijer, Sep 21 2010


STATUS

approved



