login
A193998
Mirror of the triangle A193997.
2
1, 3, 2, 6, 8, 3, 11, 23, 18, 5, 19, 55, 66, 37, 8, 32, 120, 196, 167, 73, 13, 53, 246, 511, 587, 388, 139, 21, 87, 484, 1225, 1777, 1578, 853, 259, 34, 142, 924, 2765, 4857, 5428, 3933, 1799, 474, 55, 231, 1725, 5969, 12333, 16642, 15147, 9275, 3678
OFFSET
0,2
COMMENTS
A193998 is obtained by reversing the rows of the triangle A193997.
FORMULA
Write w(n,k) for the triangle at A193997. The triangle at A193998 is then given by w(n,n-k).
EXAMPLE
First six rows:
1
3....2
6....8.....3
11...23....18....5
19...55....66....37....8
32...120...196...167...73...13
MATHEMATICA
z = 11;
p[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
q[n_, x_] := (x + 1)^n;
p1[n_, k_] := Coefficient[p[n, x], x^k];
p1[n_, 0] := p[n, x] /. x -> 0;
d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
h[n_] := CoefficientList[d[n, x], {x}]
TableForm[Table[Reverse[h[n]], {n, 0, z}]]
Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A193997 *)
TableForm[Table[h[n], {n, 0, z}]]
Flatten[Table[h[n], {n, -1, z}]] (* A193998 *)
CROSSREFS
Cf. A193997.
Sequence in context: A370665 A127717 A210236 * A209171 A368150 A348686
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 11 2011
STATUS
approved