login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210236
Triangle of coefficients of polynomials v(n,x) jointly generated with A210235; see the Formula section.
4
1, 3, 2, 6, 8, 3, 11, 22, 16, 4, 19, 52, 57, 28, 5, 32, 112, 166, 124, 45, 6, 53, 228, 428, 432, 241, 68, 7, 87, 446, 1018, 1300, 984, 432, 98, 8, 142, 848, 2285, 3540, 3397, 2036, 728, 136, 9, 231, 1578, 4912, 8964, 10443, 7962, 3914, 1168, 183, 10
OFFSET
1,2
COMMENTS
Row sums: powers of 3
Alternating row sums: 1,1,1,1,1,1,1,1,1,1,1,...
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=x*u(n-1,x)+v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x)+1
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
3....2
6....8....3
11...22...16...4
19...52...57...28...5
First three polynomials v(n,x): 1, 3 + 2x , 6 + 8x + 3x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210235 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210236 *)
CROSSREFS
Sequence in context: A273344 A370665 A127717 * A193998 A209171 A368150
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 20 2012
STATUS
approved