OFFSET
1,2
COMMENTS
Row sums: powers of 3
Alternating row sums: 1,1,1,1,1,1,1,1,1,1,1,...
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=x*u(n-1,x)+v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x)+1
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
3....2
6....8....3
11...22...16...4
19...52...57...28...5
First three polynomials v(n,x): 1, 3 + 2x , 6 + 8x + 3x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210235 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210236 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 20 2012
STATUS
approved