OFFSET
1,1
REFERENCES
D. Suryanarayana and P. Subrahmanyam, The maximal k-full divisor of an integer, Indian J. Pure Appl. Math., Vol. 12, No. 2 (1981), pp. 175-190.
LINKS
Maurice-Étienne Cloutier, Les parties k-puissante et k-libre d’un nombre, Thèse de doctorat, Université Laval (2018).
Maurice-Étienne Cloutier, Jean-Marie De Koninck, and Nicolas Doyon, On the powerful and squarefree parts of an integer, Journal of Integer Sequences, Vol. 17 (2014), Article 14.6.6.
László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.11, pp. 31-32.
FORMULA
The constant d1 in the paper by Cloutier et al. such that Sum_{k=1..x} A057521(k) = (d1/3)*x^(3/2) + O(x^(4/3)).
Sum_{k=1..x} 1/A055231(k) = d1*x^(1/2) + O(x^(1/3)).
Equals Product_{primes p} (1 + 2/p^(3/2) - 1/p^(5/2)).
Equals (zeta(3/2)/zeta(3)) * Product_{p prime} (1 + (sqrt(p)-1)/(p*(p-sqrt(p)+1))). - Amiram Eldar, Dec 26 2024
EXAMPLE
3.51955505841710664719752940369857817186039808225407...
MATHEMATICA
$MaxExtraPrecision = 500; m = 500; c = LinearRecurrence[{0, 0, -2, 0, 1}, {0, 0, 6, 0, -5}, m]; RealDigits[(1 + 2/2^(3/2) - 1/2^(5/2))*(1 + 2/3^(3/2) - 1/3^(5/2))* Exp[NSum[Indexed[c, n]*(PrimeZetaP[n/2] - 1/2^(n/2) - 1/3^(n/2))/n, {n, 3, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]
PROG
(PARI) prodeulerrat(1 + 2/p^3 - 1/p^5, 1/2) \\ Amiram Eldar, Jun 29 2023
CROSSREFS
KEYWORD
AUTHOR
Amiram Eldar, Oct 01 2019
EXTENSIONS
More terms from Vaclav Kotesovec, May 29 2020
STATUS
approved