login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328011
The 5x + 1 sequence beginning at 1.
3
1, 6, 3, 16, 8, 4, 2, 1, 6, 3, 16, 8, 4, 2, 1, 6, 3, 16, 8, 4, 2, 1, 6, 3, 16, 8, 4, 2, 1, 6, 3, 16, 8, 4, 2, 1, 6, 3, 16, 8, 4, 2, 1, 6, 3, 16, 8, 4, 2, 1, 6, 3, 16, 8, 4, 2, 1, 6, 3, 16, 8, 4, 2, 1, 6, 3, 16, 8, 4, 2, 1, 6, 3, 16, 8, 4, 2, 1, 6, 3, 16, 8, 4, 2, 1
OFFSET
0,2
COMMENTS
See A328010 for further information.
LINKS
Alex V. Kontorovich & Jeffrey C. Lagarias, Stochastic Models for the 3x+1 and 5x+1 Problems, arXiv:0910.1944 [math.NT], 2009.
FORMULA
a(n+1) = 5*a(n) + 1 if a(n) is odd, a(n+1) = a(n)/2 otherwise.
From Colin Barker, Oct 08 2019: (Start)
G.f.: (1 + 6*x + 3*x^2 + 16*x^3 + 8*x^4 + 4*x^5 + 2*x^6) / ((1 - x)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)).
a(n) = a(n-7) for n>6.
(End)
PROG
(PARI) Vec((1 + 6*x + 3*x^2 + 16*x^3 + 8*x^4 + 4*x^5 + 2*x^6) / ((1 - x)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)) + O(x^80)) \\ Colin Barker, Oct 08 2019
CROSSREFS
Sequence in context: A248267 A236415 A267831 * A231881 A229005 A067990
KEYWORD
nonn,easy
AUTHOR
Antoine Beaulieu, Oct 01 2019
STATUS
approved