login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267831
Expansion of (1 + 5*x - 7*x^2 - 3*x^3)/((1 - x)*(1 + x^2)^2).
1
1, 6, -3, -16, 1, 22, -3, -32, 1, 38, -3, -48, 1, 54, -3, -64, 1, 70, -3, -80, 1, 86, -3, -96, 1, 102, -3, -112, 1, 118, -3, -128, 1, 134, -3, -144, 1, 150, -3, -160, 1, 166, -3, -176, 1, 182, -3, -192, 1, 198, -3, -208, 1, 214, -3, -224, 1, 230, -3, -240, 1, 246, -3, -256, 1, 262, -3
OFFSET
0,2
FORMULA
G.f.: (1 + 5*x - 7*x^2 - 3*x^3)/((1 - x)*(1 + x^2)^2).
a(n) = Sum_{k = 0..n} (-1)^(1/2 - sin((2*k + 1)*Pi/4)/sqrt(2))*(4*k + 1).
a(n) = -8*floor((n - 3)/4)^2 - 21*floor((n - 3)/4) - 8*floor((n - 2)/4)^2 + 8*floor((n - 1)/4)^2 + 8*floor(n/4)^2 - 17*floor((n - 2)/4) + 13*floor((n - 1)/4) + 9*floor(n/4) - 16.
a(n) = -1 + (2 + (1 + 4*n)*(1 - (-1)^n)/2)*(-1)^((n-1)*n/2). Therefore: a(4*k) = 1, a(4*k+1) = 2*(8*k+3), a(4*k+2) = -3, a(4*k+3) = -16*(k+1). [Bruno Berselli, Jan 21 2016]
EXAMPLE
a(0) = (0 + 1) = 1;
a(1) = (0 + 1) + (2 + 3) = 6;
a(2) = (0 + 1) + (2 + 3) - (4 + 5) = -3;
a(3) = (0 + 1) + (2 + 3) - (4 + 5) - (6 + 7) = -16;
a(4) = (0 + 1) + (2 + 3) - (4 + 5) - (6 + 7) + (8 + 9) = 1;
a(5) = (0 + 1) + (2 + 3) - (4 + 5) - (6 + 7) + (8 + 9) + (10 + 11) = 22, etc.
MATHEMATICA
Table[Sum[(-1)^(1/2 - Sin[(2 k + 1) (Pi/4)]/Sqrt[2]) (4 k + 1), {k, 0, n}], {n, 0, 70}]
Table[-8 Floor[(n - 3)/4]^2 - 21 Floor[(n - 3)/4] - 8 Floor[(n - 2)/4]^2 + 8 Floor[(n - 1)/4]^2 + 8 Floor[n/4]^2 - 17 Floor[(n - 2)/4] + 13 Floor[(n - 1)/4] + 9 Floor[n/4] - 16, {n, 0, 70}]
Table[-1 + (2 + (1 + 4 n) (1 - (-1)^n)/2) (-1)^((n - 1) n/2), {n, 0, 70}] (* Bruno Berselli, Jan 21 2016 *)
LinearRecurrence[{1, -2, 2, -1, 1}, {1, 6, -3, -16, 1}, 70] (* Vincenzo Librandi, Jan 21 2016 *)
PROG
(Sage) [-1+(2+(1+4*n)*(1-(-1)^n)/2)*(-1)^((n-1)*n/2) for n in (0..70)]; # Bruno Berselli, Jan 21 2016
(Magma) &cat [[1, 2*(8*n+3), -3, -16*(n+1)]: n in [0..17]]; // Bruno Berselli, Jan 21 2016
(Magma) I:=[1, 6, -3, -16, 1]; [n le 5 select I[n] else Self(n-1)-2*Self(n-2)+2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..70]]; // Vincenzo Librandi, Jan 21 2016
(PARI) Vec((1 + 5*x - 7*x^2 - 3*x^3)/((1 - x)*(1 + x^2)^2) + O(x^70)) \\ Michel Marcus, Oct 29 2017
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Ilya Gutkovskiy, Jan 21 2016
STATUS
approved