login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083392
Alternating partial sums of A000217.
11
0, -1, 2, -4, 6, -9, 12, -16, 20, -25, 30, -36, 42, -49, 56, -64, 72, -81, 90, -100, 110, -121, 132, -144, 156, -169, 182, -196, 210, -225, 240, -256, 272, -289, 306, -324, 342, -361, 380, -400, 420, -441, 462, -484, 506, -529, 552, -576, 600, -625, 650, -676, 702
OFFSET
0,3
COMMENTS
Conjecture: for n > 0, a(n-1) is equal to the determinant of an n X n symmetric Toeplitz matrix M(n) whose first row consists of a single zero followed by successive positive integers repeated (A004526). - Stefano Spezia, Jan 10 2020
FORMULA
a(n) = Sum_{i=0..n} (-1)^i*t(i) where t(i) = i*(i+1)/2.
From R. J. Mathar, Feb 09 2010: (Start)
a(n) = -2*a(n-1) + 2*a(n-3) + a(n-4) for n > 3.
G.f.: x/((x-1)*(1+x)^3). (End)
a(n) = (-1)^n * ((n^2+n)/2 - floor(n^2/4)). - William A. Tedeschi, Aug 24 2010
E.g.f.: (1/4)*((x - 3)*x*cosh(x) - (x^2 - 3*x + 1)*sinh(x)). - Stefano Spezia, Jan 11 2020
Negative of the Euler transform of length 2 sequence [-2, 3]. - Michael Somos, Apr 27 2020
EXAMPLE
a(4) = t(0) - t(1) + t(2) - t(3) + t(4) = 0 - 1 + 3 - 6 + 10 = 6.
G.f. = - x + 2*x^2 - 4*x^3 + 6*x^4 - 9*x^5 + 12*x^6 - 16*x^7 + ... - Michael Somos, Apr 27 2020
MATHEMATICA
LinearRecurrence[{-2, 0, 2, 1}, {0, -1, 2, -4}, 60] (* Harvey P. Dale, Mar 16 2016 *)
PROG
(PARI) t(n)=n*(n+1)/2;
for (n=0, 30, print1(sum(i=0, n, (-1)^i*t(i)), ", "))
(Magma) [(-1)^n*((n^2+n)/2 - Floor(n^2/4)): n in [0..50]]; // G. C. Greubel, Oct 29 2017
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Jon Perry, Jun 11 2003
EXTENSIONS
More terms from David W. Wilson, Jun 14 2003
STATUS
approved