login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A087811 Numbers n such that ceiling(sqrt(n)) divides n. 14
1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72, 81, 90, 100, 110, 121, 132, 144, 156, 169, 182, 196, 210, 225, 240, 256, 272, 289, 306, 324, 342, 361, 380, 400, 420, 441, 462, 484, 506, 529, 552, 576, 600, 625, 650, 676, 702, 729, 756, 784, 812, 841 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Essentially the same as the quarter-squares A002620.

Nonsquare elements of this sequence are given by A002378. - Max Alekseyev, Nov 27 2006

This also gives the number of ways to make change for "c" cents using only pennies, nickels and dimes. You must first set n=floor(c/5), to account for the 5-repetitive nature of the task. - Adam Sasson, Feb 09 2011

These are the segment boundaries of Oppermann's Conjecture (1882): n^2-n < p < n^2 < p < n^2+n. - Fred Daniel Kline, Apr 07 2011

A087811(n) is the number of (w,x,y) having all terms in {0..n} and w=2*x+y. - Clark Kimberling, Jun 04 2012

a(n+1) is also the number of points with integer coordinates inside a rectangle isosceles triangle with hypotenuse [0,n] (see A115065 for an equilateral triangle). - Michel Marcus, Aug 05 2013

a(n) = degree of generating polynomials of Galois numbers in (n+1)-dimensional vector space, defined as total number of subspaces in (n+1) space over GF(n) (see Mathematica procedure), when n is a power of a prime. - Artur Jasinski, Aug 31 2016, corrected by Robert Israel, Sep 23 2016

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..300

Wikipedia, Oppermann's conjecture

Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).

FORMULA

a(n) = (n + n mod 2)*(n + 2 - n mod 2)/4.

Numbers of the form k^2 or k^2 - k. - Don Reble, Oct 17 2003

a(1) = 1, a(2) = 2, a(n) = n + a(n - 2). - Alonso del Arte, Jun 18 2005

G.f.: x/((1+x)*(1-x)^3). a(n) = (2*n*(n+2)-(-1)^n+1)/8. - Bruno Berselli, Feb 09 2011

G.f.: G(0)/(2*(1-x^2)*(1-x)), where G(k)= 1 + 1/(1 - x*(2*k+1)/(x*(2*k+2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013

a(n) = (C(n+2,2)-floor((n+2)/2))/2. - Mircea Merca, Nov 23 2013

a(n) = ((-1)^n*(-1 + (-1)^n*(1 + 2*n*(2 + n))))/8. - Fred Daniel Kline, Jan 06 2015

a(n) = Product_{k=1...n-1}(1 + 2 / (k + k mod 2)), n>=1. - Fred Daniel Kline, Oct 30 2016

MAPLE

f:= gfun:-rectoproc({a(n)=n+a(n-2), a(1)=1, a(2)=2}, a(n), remember):

map(f, [$1..100]); # Robert Israel, Aug 31 2016

MATHEMATICA

a[1] := 1; a[2] := 2; a[n_] := n + a[n - 2]; Table[a[n], {n, 57}] (Alonso del Arte)

GaloisNumber[n_, q_] :=

Sum[QBinomial[n, m, q], {m, 0, n}]; aa = {}; Do[

sub = Table[GaloisNumber[m, n], {n, 0, 200}];

pp = InterpolatingPolynomial[sub, x]; pol = pp /. x -> n + 1;

coef = CoefficientList[pol, n];

AppendTo[aa, Length[coef] - 1], {m, 2, 25}]; aa (* Artur Jasinski, Aug 31 2016 *)

Select[Range[900], Divisible[#, Ceiling[Sqrt[#]]]&] (* or *) LinearRecurrence[ {2, 0, -2, 1}, {1, 2, 4, 6}, 60] (* Harvey P. Dale, Nov 06 2016 *)

PROG

(MAGMA) [ n: n in [1..841] | n mod Ceiling(Sqrt(n)) eq 0 ]; // Bruno Berselli, Feb 09 2011

(PARI) a(n)=(n+n%2)*(n+2-n%2)/4 \\ Charles R Greathouse IV, Apr 03 2012

(Haskell)

a087811 n = (n + n `mod` 2) * (n + 2 - n `mod` 2) `div` 4

-- Reinhard Zumkeller, Oct 27 2012

CROSSREFS

Cf. A002378, A002620, A003059, A110835.

Subsequence of A006446.

Sequence in context: A083392 A076921 A002620 * A025699 A224813 A224812

Adjacent sequences:  A087808 A087809 A087810 * A087812 A087813 A087814

KEYWORD

nonn,easy

AUTHOR

Reinhard Zumkeller, Oct 16 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 17 23:47 EST 2018. Contains 299297 sequences. (Running on oeis4.)