login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087811
Numbers k such that ceiling(sqrt(k)) divides k.
18
1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72, 81, 90, 100, 110, 121, 132, 144, 156, 169, 182, 196, 210, 225, 240, 256, 272, 289, 306, 324, 342, 361, 380, 400, 420, 441, 462, 484, 506, 529, 552, 576, 600, 625, 650, 676, 702, 729, 756, 784, 812, 841
OFFSET
1,2
COMMENTS
Essentially the same as the quarter-squares A002620.
Nonsquare terms of this sequence are given by A002378. - Max Alekseyev, Nov 27 2006
This also gives the number of ways to make change for "c" cents using only pennies, nickels and dimes. You must first set n=floor(c/5), to account for the 5-repetitive nature of the task. - Adam Sasson, Feb 09 2011
These are the segment boundaries of Oppermann's conjecture (1882): n^2-n < p < n^2 < p < n^2+n. - Fred Daniel Kline, Apr 07 2011
a(n) is the number of triples (w,x,y) having all terms in {0..n} and w=2*x+y. - Clark Kimberling, Jun 04 2012
a(n+1) is also the number of points with integer coordinates inside a rectangle isosceles triangle with hypotenuse [0,n] (see A115065 for an equilateral triangle). - Michel Marcus, Aug 05 2013
a(n) = degree of generating polynomials of Galois numbers in (n+1)-dimensional vector space, defined as total number of subspaces in (n+1) space over GF(n) (see Mathematica procedure), when n is a power of a prime. - Artur Jasinski, Aug 31 2016, corrected by Robert Israel, Sep 23 2016
Also number of pairs (x,y) with 0 < x <= y <= n, x + y > n. - Ralf Steiner, Jan 05 2020
FORMULA
a(n) = (n + n mod 2)*(n + 2 - n mod 2)/4.
Numbers of the form m^2 or m^2 - m. - Don Reble, Oct 17 2003
a(1) = 1, a(2) = 2, a(n) = n + a(n - 2). - Alonso del Arte, Jun 18 2005
From Bruno Berselli, Feb 09 2011: (Start)
G.f.: x/((1+x)*(1-x)^3).
a(n) = (2*n*(n+2)-(-1)^n+1)/8. (End)
G.f.: G(0)/(2*(1-x^2)*(1-x)), where G(k) = 1 + 1/(1 - x*(2*k+1)/(x*(2*k+2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013
a(n) = (C(n+2,2) - floor((n+2)/2))/2. - Mircea Merca, Nov 23 2013
a(n) = ((-1)^n*(-1 + (-1)^n*(1 + 2*n*(2 + n))))/8. - Fred Daniel Kline, Jan 06 2015
a(n) = Product_{k=1...n-1} (1 + 2 / (k + k mod 2)), n >= 1. - Fred Daniel Kline, Oct 30 2016
E.g.f.: (1/4)*(x*(3 + x)*cosh(x) + (1 + 3*x + x^2)*sinh(x)). - Stefano Spezia, Jan 05 2020
a(n) = (n*(n+2)+(n mod 2))/4. - Chai Wah Wu, Jul 27 2022
Sum_{n>=1} 1/a(n) = Pi^2/6 + 1. - Amiram Eldar, Sep 17 2022
a(n) = A024206(n) + 1. - Ya-Ping Lu, Dec 29 2023
MAPLE
f:= gfun:-rectoproc({a(n)=n+a(n-2), a(1)=1, a(2)=2}, a(n), remember):
map(f, [$1..100]); # Robert Israel, Aug 31 2016
MATHEMATICA
a[1] := 1; a[2] := 2; a[n_] := n + a[n - 2]; Table[a[n], {n, 57}] (* Alonso del Arte *)
GaloisNumber[n_, q_] :=
Sum[QBinomial[n, m, q], {m, 0, n}]; aa = {}; Do[
sub = Table[GaloisNumber[m, n], {n, 0, 200}];
pp = InterpolatingPolynomial[sub, x]; pol = pp /. x -> n + 1;
coef = CoefficientList[pol, n];
AppendTo[aa, Length[coef] - 1], {m, 2, 25}]; aa (* Artur Jasinski, Aug 31 2016 *)
Select[Range[900], Divisible[#, Ceiling[Sqrt[#]]]&] (* or *) LinearRecurrence[ {2, 0, -2, 1}, {1, 2, 4, 6}, 60] (* Harvey P. Dale, Nov 06 2016 *)
PROG
(Magma) [ n: n in [1..841] | n mod Ceiling(Sqrt(n)) eq 0 ]; // Bruno Berselli, Feb 09 2011
(PARI) a(n)=(n+n%2)*(n+2-n%2)/4 \\ Charles R Greathouse IV, Apr 03 2012
(PARI) j=0; for(k=1, 850, s=sqrtint(4*k+1); if(s>j, j=s; print1(k, ", "))) \\ Hugo Pfoertner, Sep 17 2018
(Haskell)
a087811 n = (n + n `mod` 2) * (n + 2 - n `mod` 2) `div` 4
-- Reinhard Zumkeller, Oct 27 2012
(Python)
def A087811(n): return n*(n+2)+(n&1)>>2 # Chai Wah Wu, Jul 27 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Oct 16 2003
STATUS
approved