Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #46 Sep 08 2022 08:45:10
%S 0,-1,2,-4,6,-9,12,-16,20,-25,30,-36,42,-49,56,-64,72,-81,90,-100,110,
%T -121,132,-144,156,-169,182,-196,210,-225,240,-256,272,-289,306,-324,
%U 342,-361,380,-400,420,-441,462,-484,506,-529,552,-576,600,-625,650,-676,702
%N Alternating partial sums of A000217.
%C Conjecture: for n > 0, a(n-1) is equal to the determinant of an n X n symmetric Toeplitz matrix M(n) whose first row consists of a single zero followed by successive positive integers repeated (A004526). - _Stefano Spezia_, Jan 10 2020
%H William A. Tedeschi, <a href="/A083392/b083392.txt">Table of n, a(n) for n = 0..10000</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Toeplitz_matrix">Toeplitz Matrix</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (-2,0,2,1).
%F a(n) = Sum_{i=0..n} (-1)^i*t(i) where t(i) = i*(i+1)/2.
%F From _R. J. Mathar_, Feb 09 2010: (Start)
%F a(n) = -2*a(n-1) + 2*a(n-3) + a(n-4) for n > 3.
%F G.f.: x/((x-1)*(1+x)^3). (End)
%F a(n) = (-1)^n * ((n^2+n)/2 - floor(n^2/4)). - _William A. Tedeschi_, Aug 24 2010
%F E.g.f.: (1/4)*((x - 3)*x*cosh(x) - (x^2 - 3*x + 1)*sinh(x)). - _Stefano Spezia_, Jan 11 2020
%F Negative of the Euler transform of length 2 sequence [-2, 3]. - _Michael Somos_, Apr 27 2020
%e a(4) = t(0) - t(1) + t(2) - t(3) + t(4) = 0 - 1 + 3 - 6 + 10 = 6.
%e G.f. = - x + 2*x^2 - 4*x^3 + 6*x^4 - 9*x^5 + 12*x^6 - 16*x^7 + ... - _Michael Somos_, Apr 27 2020
%t LinearRecurrence[{-2,0,2,1},{0,-1,2,-4},60] (* _Harvey P. Dale_, Mar 16 2016 *)
%o (PARI) t(n)=n*(n+1)/2;
%o for (n=0,30,print1(sum(i=0,n,(-1)^i*t(i)), ", "))
%o (Magma) [(-1)^n*((n^2+n)/2 - Floor(n^2/4)): n in [0..50]]; // _G. C. Greubel_, Oct 29 2017
%Y Cf. A000217, A002620, A004526.
%K sign,easy
%O 0,3
%A _Jon Perry_, Jun 11 2003
%E More terms from _David W. Wilson_, Jun 14 2003