login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A328010 The 5x + 1 sequence beginning at 17. 3
17, 86, 43, 216, 108, 54, 27, 136, 68, 34, 17, 86, 43, 216, 108, 54, 27, 136, 68, 34, 17, 86, 43, 216, 108, 54, 27, 136, 68, 34, 17, 86, 43, 216, 108, 54, 27, 136, 68, 34, 17, 86, 43, 216, 108, 54, 27, 136, 68, 34, 17, 86, 43, 216, 108, 54, 27, 136, 68, 34, 17 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
The 5x+1 problem is similar to the 3x+1 or Collatz problem. For some starting values it is known that the 5x+1 trajectory will tend to infinity or enter a periodic orbit.
Alex V. Kontorovich & Jeffrey C. Lagarias conjectured that there are very few periodic orbits. One of them is shown here.
The two other known periodic orbits are given in the crossrefs.
LINKS
Alex V. Kontorovich & Jeffrey C. Lagarias, Stochastic Models for the 3x+1 and 5x+1 Problems arXiv:0910.1944 [math.NT], 2009.
FORMULA
a(n+1) = 5*a(n) + 1 if a(n) is odd, a(n+1) = a(n)/2 otherwise.
From Colin Barker, Oct 04 2019: (Start)
G.f.: (17 + 86*x + 43*x^2 + 216*x^3 + 108*x^4 + 54*x^5 + 27*x^6 + 136*x^7 + 68*x^8 + 34*x^9) / ((1 - x)*(1 + x)*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-10) for n>9.
(End)
PROG
(PARI) Vec((17 + 86*x + 43*x^2 + 216*x^3 + 108*x^4 + 54*x^5 + 27*x^6 + 136*x^7 + 68*x^8 + 34*x^9) / ((1 - x)*(1 + x)*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)) + O(x^60)) \\ Colin Barker, Oct 05 2019
CROSSREFS
Sequence in context: A288420 A156157 A146389 * A041554 A080770 A118863
KEYWORD
nonn,easy
AUTHOR
Antoine Beaulieu, Oct 01 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 7 21:25 EDT 2023. Contains 363157 sequences. (Running on oeis4.)