login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the growth constant for the partial sums of powerful part of n (A057521).
4

%I #18 Dec 26 2024 20:02:07

%S 3,5,1,9,5,5,5,0,5,8,4,1,7,1,0,6,6,4,7,1,9,7,5,2,9,4,0,3,6,9,8,5,7,8,

%T 1,7,1,8,6,0,3,9,8,0,8,2,2,5,4,0,7,8,1,4,7,1,1,4,6,4,0,3,1,4,5,4,1,7,

%U 8,3,9,8,4,7,9,7,3,5,4,0,8,9,7,7,1,3,5,8,0,3,7,5,3,6,4,6,1,6,2,0,1,1,4,5,5

%N Decimal expansion of the growth constant for the partial sums of powerful part of n (A057521).

%D D. Suryanarayana and P. Subrahmanyam, The maximal k-full divisor of an integer, Indian J. Pure Appl. Math., Vol. 12, No. 2 (1981), pp. 175-190.

%H Maurice-Étienne Cloutier, <a href="http://hdl.handle.net/20.500.11794/28374">Les parties k-puissante et k-libre d’un nombre</a>, Thèse de doctorat, Université Laval (2018).

%H Maurice-Étienne Cloutier, Jean-Marie De Koninck, and Nicolas Doyon, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Cloutier/cloutier2.html">On the powerful and squarefree parts of an integer</a>, Journal of Integer Sequences, Vol. 17 (2014), Article 14.6.6.

%H László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.11, pp. 31-32.

%F The constant d1 in the paper by Cloutier et al. such that Sum_{k=1..x} A057521(k) = (d1/3)*x^(3/2) + O(x^(4/3)).

%F Sum_{k=1..x} 1/A055231(k) = d1*x^(1/2) + O(x^(1/3)).

%F Equals Product_{primes p} (1 + 2/p^(3/2) - 1/p^(5/2)).

%F Equals (zeta(3/2)/zeta(3)) * Product_{p prime} (1 + (sqrt(p)-1)/(p*(p-sqrt(p)+1))). - _Amiram Eldar_, Dec 26 2024

%e 3.51955505841710664719752940369857817186039808225407...

%t $MaxExtraPrecision = 500; m = 500; c = LinearRecurrence[{0, 0, -2, 0, 1}, {0, 0, 6, 0, -5}, m]; RealDigits[(1 + 2/2^(3/2) - 1/2^(5/2))*(1 + 2/3^(3/2) - 1/3^(5/2))* Exp[NSum[Indexed[c, n]*(PrimeZetaP[n/2] - 1/2^(n/2) - 1/3^(n/2))/n, {n, 3, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

%o (PARI) prodeulerrat(1 + 2/p^3 - 1/p^5, 1/2) \\ _Amiram Eldar_, Jun 29 2023

%Y Cf. A055231, A057521, A090699, A191622.

%K nonn,cons,changed

%O 1,1

%A _Amiram Eldar_, Oct 01 2019

%E More terms from _Vaclav Kotesovec_, May 29 2020