The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136533 Coefficients of Laguerre recursive polynomials with an (n+2)!/2 multiplication factor and alpha=a0 =0 from Hochstadt: P(x, n) = (2*n + a0 + 1 - x)*P(x, n - 1)/(n + 1) - n*P(x, n - 2)/(n + 1);. 0
 1, 3, -3, 12, -24, 4, 60, -180, 65, -5, 360, -1440, 822, -132, 6, 2520, -12600, 9954, -2478, 231, -7, 20160, -120960, 122832, -41856, 5976, -368, 8, 181440, -1270080, 1581768, -688392, 133380, -12492, 549, -9, 1814400, -14515200, 21462480, -11412000, 2806200, -354720, 23610, -780, 10, 19958400 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Table[Apply[Plus, CoefficientList[(n + 2)!P[x, n]/2, x]], {n, 0, 10}]; Row sums: {1, 0, -8, -60, -384, -2380, -14208, -73836, -176000, 3824964, 104573760} REFERENCES page 8 and page 42 - 43; Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986 LINKS FORMULA a0=0; p(x,0)=1;p(x,1)=1+a0-x; P(x, n) = (2*n + a0 + 1 - x)*P(x, n - 1)/(n + 1) - n*P(x, n - 2)/(n + 1); EXAMPLE {1}, {3, -3}, {12, -24, 4}, {60, -180,65, -5}, {360, -1440, 822, -132, 6}, {2520, -12600, 9954, -2478, 231, -7}, {20160, -120960,122832, -41856, 5976, -368, 8}, {181440, -1270080, 1581768, -688392, 133380, -12492, 549, -9}, {1814400, -14515200, 21462480, -11412000, 2806200, -354720, 23610, -780, 10}, {19958400, -179625600, 307937520, -193968720, 57998160, -9263760, 829290, -41382, 1067, -11}, {239500800, -2395008000, 4675026240, -3410138880, 1203543360, -232928640, 26271000, -1759104, 68388, -1416, 12} MATHEMATICA a0 = 0; P[x, 0] = 1; P[x, 1] = 1 + a0 - x; P[x_, n_] := P[x, n] = (2*n + a0 + 1 - x)*P[x, n - 1]/(n + 1) - n*P[x, n - 2]/(n + 1); Table[ExpandAll[(n + 2)!*P[x, n]/2], {n, 0, 10}]; a = Table[CoefficientList[(n + 2)!*P[x, n]/2, x], {n, 0, 10}]; Flatten[a] CROSSREFS Cf. A021009. Sequence in context: A006804 A052533 A268798 * A268639 A192307 A328150 Adjacent sequences:  A136530 A136531 A136532 * A136534 A136535 A136536 KEYWORD uned,tabl,sign AUTHOR Roger L. Bagula, Mar 23 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 22:46 EDT 2021. Contains 347651 sequences. (Running on oeis4.)