login
A268798
T(n,k)=Number of nXk 0..2 arrays with some element plus some horizontally, vertically or antidiagonally adjacent neighbor totalling two exactly once.
8
0, 3, 3, 12, 22, 12, 36, 78, 78, 36, 96, 234, 248, 234, 96, 240, 652, 950, 950, 652, 240, 576, 1714, 3384, 4800, 3384, 1714, 576, 1344, 4360, 11948, 23994, 23994, 11948, 4360, 1344, 3072, 10820, 41248, 117062, 168740, 117062, 41248, 10820, 3072, 6912, 26366
OFFSET
1,2
COMMENTS
Table starts
....0.....3......12.......36.........96.........240...........576
....3....22......78......234........652........1714..........4360
...12....78.....248......950.......3384.......11948.........41248
...36...234.....950.....4800......23994......117062........561116
...96...652....3384....23994.....168740.....1158904.......7801688
..240..1714...11948...117062....1158904....11138352.....104971262
..576..4360...41248...561116....7801688...104971262....1384570516
.1344.10820..140698..2652936...51781418...974000420...17967375416
.3072.26366..474472.12405748..339641264..8927994302..230262982692
.6912.63346.1586038.57490444.2206871084.81031120788.2921020155826
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 4*a(n-1) -4*a(n-2)
k=2: a(n) = 2*a(n-1) +3*a(n-2) -2*a(n-3) -6*a(n-4) -4*a(n-5) -a(n-6) for n>7
k=3: [order 10] for n>12
k=4: [order 16] for n>19
k=5: [order 26] for n>29
k=6: [order 42] for n>45
k=7: [order 68] for n>71
EXAMPLE
Some solutions for n=4 k=4
..0..2..2..2. .2..1..0..0. .0..0..0..0. .0..0..0..0. .1..2..1..2
..1..2..2..1. .0..0..0..1. .0..0..0..1. .1..0..1..0. .2..2..2..2
..2..2..2..2. .1..0..0..0. .1..0..0..0. .1..0..0..1. .1..2..2..2
..2..1..2..2. .0..0..0..0. .0..1..1..0. .0..1..0..0. .2..2..1..1
CROSSREFS
Column 1 is A167667(n-1).
Sequence in context: A290438 A006804 A052533 * A136533 A268639 A192307
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 13 2016
STATUS
approved