|
|
A268801
|
|
Primes 4k + 3 at the end of the maximal gaps in A268799.
|
|
3
|
|
|
7, 19, 43, 103, 307, 419, 1367, 2647, 7411, 7823, 11239, 11699, 31511, 47051, 148063, 288179, 360779, 425779, 507347, 666403, 1414943, 2199143, 3358423, 9287939, 11512843, 11648887, 24315443, 42454267, 145555231, 161720627, 184008203, 766669427
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Subsequence of A002145.
A268799 lists the corresponding record gap sizes. See more comments there.
|
|
LINKS
|
Alexei Kourbatov, Table of n, a(n) for n = 1..41
Alexei Kourbatov and Marek Wolf, Predicting maximal gaps in sets of primes, arXiv preprint arXiv:1901.03785 [math.NT], 2019.
|
|
EXAMPLE
|
The first two primes of the form 4k+3 are 3 and 7, so a(1)=7. The next prime of this form is 11; the gap 11-7 is not a record so no term is added to the sequence. The next prime of this form is 19; the gap 19-11=8 is a new record so a(2)=19.
|
|
PROG
|
(PARI) re=0; s=3; forprime(p=7, 1e8, if(p%4!=3, next); g=p-s; if(g>re, re=g; print1(p", ")); s=p)
|
|
CROSSREFS
|
Cf. A002145, A084161, A268799, A268800.
Sequence in context: A247905 A048488 A155303 * A155275 A155268 A124700
Adjacent sequences: A268798 A268799 A268800 * A268802 A268803 A268804
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Alexei Kourbatov, Feb 13 2016
|
|
STATUS
|
approved
|
|
|
|