The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A247905 Start with a single hexagon; at n-th generation add a hexagon at each expandable vertex (this is the "vertex to side" version); a(n) is the sum of all label values at n-th generation. (See comment for construction rules.) 7
 1, 7, 19, 43, 79, 139, 223, 355, 535, 811, 1183, 1747, 2503, 3643, 5167, 7459, 10519, 15115, 21247, 30451, 42727, 61147, 85711, 122563, 171703, 245419, 343711, 491155, 687751, 982651, 1375855, 1965667, 2752087, 3931723, 5504575, 7863859, 11009575, 15728155, 22019599, 31456771, 44039671, 62914027, 88079839, 125828563, 176160199, 251657659 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Refer to A247620, which is the "vertex to vertex" expansion version. For this case, the expandable vertices of the existing generation will contact the sides of the new ones i.e. "vertex to side" expansion version. Let us assign the label "1" the hexagon at the origin; at n-th generation add a hexagon at each expandable vertex, i.e. each vertex where the added generations will not overlap the existing ones, although overlaps among new generations are allowed. The non-overlapping hexagons will have the same label value as a predecessor; for the overlapping ones, the label value will be sum of label values of predecessors. a(n) is the sum of all label values at n-th generation. The hexagons count is A003215. See illustration. For n >= 1, (a(n) - a(n-1))/6 is A027383. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Kival Ngaokrajang, Illustration of initial terms Index entries for linear recurrences with constant coefficients, signature (2,1,-4,2). FORMULA a(0) = 1, for n >= 1, a(n) = 6*A027383(n) + a(n-1). a(n) = 2*a(n-1) +a(n-2) -4*a(n-3) +2*a(n-4). - Colin Barker, Sep 26 2014 G.f.: (1+5*x+4*x^2+2*x^3)/((1-x)^2*(1-2*x^2)). - Colin Barker, Sep 26 2014 a(n) = 3*2^(n/2)*((1+sqrt(2))^3 + (-1)^n*(1-sqrt(2))^3) -12*n - 41. - G. C. Greubel, Feb 18 2022 MATHEMATICA LinearRecurrence[{2, 1, -4, 2}, {1, 7, 19, 43}, 50] (* G. C. Greubel, Feb 17 2022 *) PROG (PARI) { b=0; a=1; print1(1, ", "); for (n=0, 50, b=b+2^floor(n/2); a=a+6*b; print1(a, ", ") ) } (PARI) Vec(-(2*x^3+4*x^2+5*x+1)/((x-1)^2*(2*x^2-1)) + O(x^100)) \\ Colin Barker, Sep 26 2014 (Magma) [3*2^(n/2)*((7+5*Sqrt(2)) + (-1)^n*(7-5*Sqrt(2))) -(12*n+41): n in [0..50]]; // G. C. Greubel, Feb 17 2022 (Sage) [3*2^(n/2)*((7+5*sqrt(2)) + (-1)^n*(7-5*sqrt(2))) -(12*n+41) for n in (0..50)] # G. C. Greubel, Feb 17 2022 CROSSREFS Cf. Vertex to vertex version: A061777, A247618, A247619, A247620. Cf. Vertex to side version: A101946, A247903, A247904. Cf. A003215, A027383. Sequence in context: A298034 A054691 A139828 * A048488 A155303 A268801 Adjacent sequences: A247902 A247903 A247904 * A247906 A247907 A247908 KEYWORD nonn,easy AUTHOR Kival Ngaokrajang, Sep 26 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 13:49 EST 2023. Contains 367445 sequences. (Running on oeis4.)