login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A247907 Expansion of (1 + x) / ((1 - x^4) * (1 - x - x^5)) in powers of x. 3
1, 2, 2, 2, 3, 5, 7, 9, 12, 16, 21, 28, 38, 51, 67, 88, 117, 156, 207, 274, 363, 481, 637, 844, 1119, 1483, 1964, 2601, 3446, 4566, 6049, 8013, 10615, 14062, 18628, 24677, 32691, 43307, 57369, 75997, 100675, 133367, 176674, 234043, 310041, 410717, 544084 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
G.f.: 1 / ((1 - x) * (1 - x + x^2) * (1 + x^2) * (1 - x^2 - x^3)).
a(n) = -A247918(-8-n) for all n in Z.
Convolution of A003520 and A133872.
0 = a(n) + a(n+4) - a(n+5) + mod(floor((n-1) / 2), 2) for all n in Z.
0 = a(n) - a(n+1) + a(n+2) - a(n+3) + a(n+4) - 2*a(n+5) + 2*a(n+6) - 2*a(n+7) + a(n+8) for all n in Z.
EXAMPLE
G.f. = 1 + 2*x + 2*x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 7*x^6 + 9*x^7 + 12*x^8 + ...
MATHEMATICA
CoefficientList[Series[(1 + x)/((1 - x^4) (1 - x - x^5)), {x, 0, 100}], x] (* Vincenzo Librandi, Sep 27 2014 *)
PROG
(PARI) {a(n) = if( n<0, n=-8-n; polcoeff( -1 / ((1 - x) * (1 - x + x^2) * (1 + x^2) * (1 + x - x^3)) + x * O(x^n), n), polcoeff( 1 / ((1 - x) * (1 - x + x^2) * (1 + x^2) * (1 - x^2 - x^3)) + x * O(x^n), n))};
(Magma) m:=60; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1 +x)/((1-x^4)*(1-x-x^5)))); // G. C. Greubel, Aug 04 2018
CROSSREFS
Sequence in context: A126111 A100142 A296103 * A122789 A291294 A014208
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Sep 26 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 05:37 EST 2023. Contains 367575 sequences. (Running on oeis4.)