The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A247903 Start with a single square; at n-th generation add a square at each expandable vertex (this is the "vertex to side" version); a(n) is the sum of all label values at n-th generation. (See comment for construction rules.) 7
 1, 5, 13, 29, 53, 93, 149, 237, 357, 541, 789, 1165, 1669, 2429, 3445, 4973, 7013, 10077, 14165, 20301, 28485, 40765, 57141, 81709, 114469, 163613, 229141, 327437, 458501, 655101, 917237, 1310445, 1834725, 2621149, 3669717, 5242573, 7339717, 10485437 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Refer to A247618, which is the "vertex to vertex" expansion version. For this case, the expandable vertices of the existing generation will contact the sides of the new ones i.e."vertex to side" expansion version. Let us assign the label "1" to the square at the origin; at n-th generation add a square at each expandable vertex, i.e. each vertex where the added generations will not overlap the existing ones, although overlaps among new generations are allowed. The non-overlapping squares will have the same label value as a predecessor; for the overlapping ones, the label value will be sum of label values of predecessors. a(n) is the sum of all label values at n-th generation. The squares count is A001844. See illustration ("vertex to side" is equal to "side to vertex"). For n >= 1, (a(n) - a(n-1))/4 is A027383. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Kival Ngaokrajang, Illustration of initial terms (vertex to side) Kival Ngaokrajang, Illustration of initial terms (side to vertex) Index entries for linear recurrences with constant coefficients, signature (2,1,-4,2). FORMULA a(0) = 1, for n >= 1, a(n) = 4*A027383(n) + a(n-1). a(n) = 2*a(n-1) +a(n-2) -4*a(n-3) +2*a(n-4). - Colin Barker, Sep 26 2014 G.f.: (1+3*x+2*x^2+2*x^3)/((1-x)^2*(1-2*x^2)). - Colin Barker, Sep 26 2014 A(n) = 2^(n/2+1)*((1+sqrt(2))^3 + (-1)^n*(1-sqrt(2))^3) - (8*n + 27). - G. C. Greubel, Feb 18 2022 MATHEMATICA LinearRecurrence[{2, 1, -4, 2}, {1, 5, 13, 29}, 51] (* G. C. Greubel, Feb 18 2022 *) PROG (PARI) { b=0; a=1; print1(1, ", "); for (n=0, 50, b=b+2^floor(n/2); a=a+4*b; print1(a, ", ") ) } (PARI) Vec(-(2*x^3+2*x^2+3*x+1) / ((x-1)^2*(2*x^2-1)) + O(x^100)) \\ Colin Barker, Sep 26 2014 (Magma) [2^(n/2+1)*((7+5*Sqrt(2)) + (-1)^n*(7-5*Sqrt(2))) -(8*n+27): n in [0..50]]; // G. C. Greubel, Feb 18 2022 (Sage) [2*2^(n/2)*((7+5*sqrt(2)) +(-1)^n*(7-5*sqrt(2))) -(8*n+27) for n in (0..50)] # G. C. Greubel, Feb 18 2022 CROSSREFS Vertex to vertex version: A061777, A247618, A247619, A247620. Vertex to side version: A101946, A247904, A247905. Cf. A001844, A027383. Sequence in context: A106931 A078370 A308464 * A350687 A240130 A005473 Adjacent sequences: A247900 A247901 A247902 * A247904 A247905 A247906 KEYWORD nonn,easy AUTHOR Kival Ngaokrajang, Sep 26 2014 EXTENSIONS More terms from Colin Barker, Sep 26 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 03:52 EST 2024. Contains 370219 sequences. (Running on oeis4.)