OFFSET
1,1
COMMENTS
Merikoski proved that there are infinitely many primes of this form.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Jori Merikoski, The polynomials X^2+(Y^2+1)^2 and X^2+(Y^3+Z^3)^2 also capture their primes, arXiv:2112.03617 [math.NT], 2021.
PROG
(PARI) listA003325(lim)=my(v=List()); lim\=1; for(x=1, sqrtnint(lim-1, 3), my(x3=x^3); for(y=1, min(sqrtnint(lim-x3, 3), x), listput(v, x3+y^3))); Set(v)
list(lim)=lim\=1; my(v=List(), u=apply(sqr, listA003325(sqrtint(lim-1)))); for(x=1, sqrtint(lim-1), my(x2=x^2); for(i=1, #u, my(t=x2+u[i]); if(t>lim, break); if(isprime(t), listput(v, t)))); Set(v)
CROSSREFS
KEYWORD
nonn
AUTHOR
Charles R Greathouse IV, Jan 11 2022
STATUS
approved