login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350687
Primes of the form x^2 + (y^3 + z^3)^2 with x,y,z > 0.
2
5, 13, 29, 53, 97, 173, 181, 229, 257, 277, 281, 293, 337, 617, 733, 757, 809, 881, 953, 1009, 1093, 1097, 1217, 1229, 1237, 1289, 1373, 1409, 1481, 1549, 1709, 1777, 1801, 1873, 1901, 2017, 2029, 2153, 2213, 2281, 2381, 2521, 2633
OFFSET
1,1
COMMENTS
Merikoski proved that there are infinitely many primes of this form.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Jori Merikoski, The polynomials X^2+(Y^2+1)^2 and X^2+(Y^3+Z^3)^2 also capture their primes, arXiv:2112.03617 [math.NT], 2021.
PROG
(PARI) listA003325(lim)=my(v=List()); lim\=1; for(x=1, sqrtnint(lim-1, 3), my(x3=x^3); for(y=1, min(sqrtnint(lim-x3, 3), x), listput(v, x3+y^3))); Set(v)
list(lim)=lim\=1; my(v=List(), u=apply(sqr, listA003325(sqrtint(lim-1)))); for(x=1, sqrtint(lim-1), my(x2=x^2); for(i=1, #u, my(t=x2+u[i]); if(t>lim, break); if(isprime(t), listput(v, t)))); Set(v)
CROSSREFS
Subsequence of A002144.
Sequence in context: A078370 A308464 A247903 * A240130 A005473 A086732
KEYWORD
nonn
AUTHOR
STATUS
approved