login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350684
Number T(n,k) of partitions of [n] such that the sum of elements i contained in block i equals k when blocks are ordered with decreasing largest elements; triangle T(n,k), n>=0, 0<=k<=max(0,A008805(n-1)), read by rows.
4
1, 0, 1, 1, 1, 1, 1, 2, 1, 6, 3, 4, 2, 16, 7, 8, 14, 3, 3, 1, 73, 25, 26, 51, 12, 12, 4, 298, 91, 92, 164, 116, 56, 30, 21, 4, 4, 1, 1453, 390, 391, 601, 676, 256, 163, 147, 28, 28, 7, 7366, 1797, 1798, 2484, 3228, 1927, 897, 876, 307, 307, 87, 31, 31, 5, 5, 1
OFFSET
0,8
LINKS
FORMULA
Sum_{k=1..max(0,A008805(n-1))} k * T(n,k) = A350683(n).
T(2n,A000217(n)) = A152947(n+1).
T(2n-1,A000217(n)) = 1 for n>=1.
T(n,2) - T(n,1) = 1 for n>=3.
EXAMPLE
T(4,0) = 6: 432|1, 42|31, 42|3|1, 4|31|2, 4|3|21, 4|3|2|1.
T(4,1) = 3: 432(1), 42(1)|3, 4(1)|3|2.
T(4,2) = 4: 43|(2)1, 43|(2)|1, 4|3(2)1, 4|3(2)|1,
T(4,3) = 2: 43(1)|(2), 4(1)|3(2).
Triangle T(n,k) begins:
1;
0, 1;
1, 1;
1, 1, 2, 1;
6, 3, 4, 2;
16, 7, 8, 14, 3, 3, 1;
73, 25, 26, 51, 12, 12, 4;
298, 91, 92, 164, 116, 56, 30, 21, 4, 4, 1;
1453, 390, 391, 601, 676, 256, 163, 147, 28, 28, 7;
...
MAPLE
b:= proc(n, m) option remember; expand(`if`(n=0, 1, add(
`if`(n=j, x^j, 1)*b(n-1, max(m, j)), j=1..m+1)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
seq(T(n), n=0..10);
MATHEMATICA
b[n_, m_] := b[n, m] = Expand[If[n == 0, 1, Sum[
If[n == j, x^j, 1]*b[n - 1, Max[m, j]], {j, 1, m + 1}]]];
T[n_] := CoefficientList[b[n, 0], x];
Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 18 2022, after Alois P. Heinz *)
CROSSREFS
Columns k=0-1 give: A350649, A350650.
Row sums give A000110.
Sequence in context: A131449 A289869 A334595 * A124443 A077172 A160047
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Jan 11 2022
STATUS
approved