login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A350684
Number T(n,k) of partitions of [n] such that the sum of elements i contained in block i equals k when blocks are ordered with decreasing largest elements; triangle T(n,k), n>=0, 0<=k<=max(0,A008805(n-1)), read by rows.
4
1, 0, 1, 1, 1, 1, 1, 2, 1, 6, 3, 4, 2, 16, 7, 8, 14, 3, 3, 1, 73, 25, 26, 51, 12, 12, 4, 298, 91, 92, 164, 116, 56, 30, 21, 4, 4, 1, 1453, 390, 391, 601, 676, 256, 163, 147, 28, 28, 7, 7366, 1797, 1798, 2484, 3228, 1927, 897, 876, 307, 307, 87, 31, 31, 5, 5, 1
OFFSET
0,8
LINKS
FORMULA
Sum_{k=1..max(0,A008805(n-1))} k * T(n,k) = A350683(n).
T(2n,A000217(n)) = A152947(n+1).
T(2n-1,A000217(n)) = 1 for n>=1.
T(n,2) - T(n,1) = 1 for n>=3.
EXAMPLE
T(4,0) = 6: 432|1, 42|31, 42|3|1, 4|31|2, 4|3|21, 4|3|2|1.
T(4,1) = 3: 432(1), 42(1)|3, 4(1)|3|2.
T(4,2) = 4: 43|(2)1, 43|(2)|1, 4|3(2)1, 4|3(2)|1,
T(4,3) = 2: 43(1)|(2), 4(1)|3(2).
Triangle T(n,k) begins:
1;
0, 1;
1, 1;
1, 1, 2, 1;
6, 3, 4, 2;
16, 7, 8, 14, 3, 3, 1;
73, 25, 26, 51, 12, 12, 4;
298, 91, 92, 164, 116, 56, 30, 21, 4, 4, 1;
1453, 390, 391, 601, 676, 256, 163, 147, 28, 28, 7;
...
MAPLE
b:= proc(n, m) option remember; expand(`if`(n=0, 1, add(
`if`(n=j, x^j, 1)*b(n-1, max(m, j)), j=1..m+1)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
seq(T(n), n=0..10);
MATHEMATICA
b[n_, m_] := b[n, m] = Expand[If[n == 0, 1, Sum[
If[n == j, x^j, 1]*b[n - 1, Max[m, j]], {j, 1, m + 1}]]];
T[n_] := CoefficientList[b[n, 0], x];
Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 18 2022, after Alois P. Heinz *)
CROSSREFS
Columns k=0-1 give: A350649, A350650.
Row sums give A000110.
Sequence in context: A131449 A289869 A334595 * A124443 A077172 A160047
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Jan 11 2022
STATUS
approved